
Research in Mathematics Education

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/rrme20

Exploring students’ conceptual understanding through
mathematical problem solving: students’ use of and shift
between different representations of rational numbers

Jonas Jäder & Helena Johansson

To cite this article: Jonas Jäder & Helena Johansson (04 Feb 2025): Exploring students’
conceptual understanding through mathematical problem solving: students’ use of and shift
between different representations of rational numbers, Research in Mathematics Education,
DOI: 10.1080/14794802.2025.2456840

To link to this article:  https://doi.org/10.1080/14794802.2025.2456840

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 04 Feb 2025.

Submit your article to this journal 

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rrme20

https://www.tandfonline.com/journals/rrme20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14794802.2025.2456840
https://doi.org/10.1080/14794802.2025.2456840
https://www.tandfonline.com/action/authorSubmission?journalCode=rrme20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=rrme20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14794802.2025.2456840?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14794802.2025.2456840?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/14794802.2025.2456840&domain=pdf&date_stamp=04%20Feb%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/14794802.2025.2456840&domain=pdf&date_stamp=04%20Feb%202025
https://www.tandfonline.com/action/journalInformation?journalCode=rrme20


Exploring students’ conceptual understanding through 
mathematical problem solving: students’ use of and shift 
between different representations of rational numbers
Jonas Jäder and Helena Johansson 

Department of Engineering, Mathematics and Science Education, Mid Sweden University, Sundsvall, 
Sweden

ABSTRACT  
One way to stimulate conceptual considerations is through 
mathematical problem solving, which requires students to 
construct new solution methods, potentially including new 
representations. Hence, this study focuses on students’ use of and 
shift between representations during problem solving, specifically 
regarding the fundamental and often challenging concept of 
rational numbers. Swedish elementary school students were 
observed when tackling mathematical problems in pairs. The 
findings revealed that the students’ considerations concerned 
several conceptual properties of rational numbers through the use 
of different representations. However, students tended to use the 
representations presented in the problem, favouring the most 
familiar representation rather than constructing their own. As a 
result, they may have overlooked opportunities to explore a wider 
range of representations which could have deepened their 
understanding of the concept. This suggests a potential 
opportunity to design problems that require students to transfer 
between representations and grapple with unfamiliar ones.
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Introduction

Doing mathematics is based on an understanding of relevant mathematical concepts 
(Stein & Smith, 1998). Conceptual understanding constitutes a crucial element of math
ematical knowledge (Hiebert & Grouws, 2007; Kilpatrick et al., 2001), as evidenced in 
numerous national curricula, including that of Sweden (Skolverket, 2022). However, 
what is meant by understanding a concept is frequently vaguely defined, often focusing 
more on identifying what students can do rather than anything else (Simon, 2017). It is 
thus of importance to link students’ actions to specific aspects of conceptual understand
ing. One central aspect of mathematical concepts and of conceptual understanding is the 
interaction with and use of representations (Viseu et al., 2021; Wedman, 2020). The 
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ability to transfer between different representations is considered essential for the devel
opment of conceptual understanding (Duval, 2006). Explanatory models can be seen as 
didactical tools making it possible to explore particular properties of a concept by using 
specific representations, both concrete and abstract. These models can aid learning by 
providing different perspectives and support (Van den Heuvel-Panhuizen, 2003). Con
ceptual understanding needs to be developed through personal experiences rather than 
by replicating a formal definition with little conceptual awareness or conceptual con
sideration (Niss, 2006). By including several diverse learning situations, a student is 
provided with the opportunity to explore and understand different properties of a 
concept.

The struggles and conceptual challenges inherent in a mathematical problem-solving 
process are avenues through which persistence and conceptual understanding can be cul
tivated (Hiebert & Grouws, 2007; Jäder, 2022; Sullivan et al., 2015). This highlights the 
importance of understanding underlying principles rather than simply memorising or 
imitating procedures (Lithner, 2017). Mathematical problem solving is generally 
defined to include the construction of new solution methods (Schoenfeld, 1985) and 
has proven to be valuable for mathematical learning (Jonsson et al., 2014). When used 
thoughtfully, uncertainties and challenges can be productive elements in students’ learn
ing processes (e.g. Kapur, 2014; Zaslavsky, 2005). Additionally, it is of importance that 
the design and analysis of mathematical problems have a clear, potential purpose or 
learning goal in mind (Jones & Pepin, 2016; Pepin, 2012).

Mathematical problems typically require construction of new representations (Lester, 
2013), which as previously highlighted, is an important aspect of conceptual understand
ing. Additionally, it has been demonstrated that students’ conceptual challenges in math
ematical problem solving can be identified and characterized, such as navigating the 
connections between different representations and meeting unfamiliar situations 
(Jäder, 2022). Mathematical problems and specific features of these problems may also 
be valuable resources, aiding not only in the development of conceptual understanding 
but also in the exploration of students’ conceptual understanding (Mitchell & Clarke, 
2004). Taking into account the need to differentiate between the ability to perform a 
task and the (conceptual) understanding revealed through this action, as well as recog
nising that different tasks may stimulate different conceptual considerations, the aim 
of this study is to contribute to the field’s understanding of mathematical problem 
solving as a means to explore students’ conceptual understanding.

A mathematical concept which has proven to be challenging and at the same time is 
considered to be a threshold concept for students is that of rational numbers (Siegler 
et al., 2012; Stafylidou & Vosniadou, 2004). Therefore, this study focuses on young stu
dents’ use of and shift between different representations in relation to the concept of 
rational numbers within the context of mathematical problem solving. The research 
question addressed by the study is: 

. What conceptual considerations regarding rational numbers are made visible in stu
dents’ use of and shift between different representations during mathematical problem 
solving?
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Mathematical concepts and conceptual understanding

Although mathematical concepts are considered central in mathematics education, there 
is no unanimous definition of the notion. Nevertheless, a mathematical concept typically 
refers to an abstract idea (Wedman, 2020), such as a formal theoretical definition (Sfard, 
1991; Tall & Vinner, 1981; Vinner, 2020), or an individual construction (Watson & 
Mason, 2006). Simon (2017) elaborates on the notion and defines a mathematical 
concept as “a researcher’s articulation of intended or inferred student knowledge of 
the logical necessity involved in a particular mathematical relationship” (p. 123). 
Through systematic literature reviews of philosophical discussions concerning concepts 
and mathematics education research related to mathematical concepts, Wedman (2020) 
identified five aspects that can be used to describe a mathematical concept: definition and 
properties; typical and atypical objects; hierarchical and non-hierarchical relations; pro
cesses and procedures; representations. All five aspects are considered essential for foster
ing conceptual understanding in mathematics (Wedman, 2020).

The first aspect, definition and properties, refers to the idea that mathematical 
definitions can be considered distinct categories, each with its own unique set of prop
erties (ascribed attributes) that characterise a specific concept (e.g. Harel & Weber, 
2020). Conceptual understanding involves the identification and processing of relevant 
(intrinsic) properties, while distinguishing them from superficial ones (e.g. Lithner, 
2008; Wedman, 2020). Typical and atypical objects is a second aspect which relates to 
the idea of prototypes as typical examples of different categories of mathematical 
objects (Presmeg, 1992). Diverse experiences can result in variations in the prototypes 
of mathematical objects. For instance, in some classrooms the diameter of a circle is con
sistently depicted horizontally, while in others it is shown vertically. Research has shown 
that both teachers and students often rely on typical and representative examples of 
mathematical objects when engaging in activities such as testing properties for a particu
lar concept (Alcock & Simpson, 2002; Presmeg, 1992). Therefore, the selection and util
isation of prototypes significantly influence students’ conceptual development processes. 
Thirdly, conceptual understanding is seen as encompassing an understanding of both 
hierarchical and non-hierarchical connections between mathematical concepts 
(Murphy, 2004). The distinction between hierarchical and non-hierarchical relations 
among mathematical concepts stems from the idea that relations can be described as 
either hierarchical tree-structures or non-hierarchical web-structures. This applies 
both within the same mathematical content area and between concepts from different 
content areas (Murphy, 2004; Wedman, 2020). The fourth aspect relates to the idea 
that a mathematical concept cannot be separated from how it is used (Sfard, 2008). 
Initially, the focus may be on employing procedures to manipulate a symbolic expression 
in one way or the other. Over time, this may evolve into viewing a process or procedure 
as a mathematical object rather than an automated step-by-step scheme (Gray & Tall, 
1994; Sfard, 2008).

The fifth aspect, representations, is widely regarded as central to mathematical activi
ties and relates to the various ways in which mathematics is communicated, both with 
oneself and with others (e.g. Duval, 2006; O’Halloran, 2005; Schleppegrell, 2007; Sfard, 
2008). The term “representation” carries different meanings across different theoretical 
perspectives. Additionally, alternative terms such as “modes”, “semiotic systems”, 
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“signifiers” or “visual mediators” are sometimes used to refer to resources for communi
cation (e.g. Duval, 2006; O’Halloran, 2005; Sfard, 2008). Examples of different mathemat
ical representations include mathematical words, numbers, mathematical symbols, 
diagrams, pictures and physical artifacts. Different representations offer the opportunity 
to explore different perspectives of the same mathematical concept, and a particular 
concept can be easier to understand through one representation compared to another 
(Usiskin, 2018). An important aspect of conceptual understanding involves grasping 
how different representations of a particular mathematical concept are related to each 
other. This includes the ability to transfer between different representations for the 
same concept (Duval, 2006; Wedman, 2020).

The concept of rational numbers and students’ understanding of rational 
numbers

The concept of rational numbers is an important area of mathematics education (e.g. 
Confrey et al., 2009). Research has demonstrated that an understanding of rational 
numbers predicts success in higher mathematics in general and in algebra in particular 
(Clarke & Roche, 2009; Siegler et al., 2012; Torbeyns et al., 2015). Moreover, rational 
numbers are a key concept when developing algebraic thinking and working algebraically 
(Eriksson & Sumpter, 2021; Loewenberg Ball et al., 2005).

Understanding the concept of rational numbers implies being able to consider a 
rational number as a part-whole (fraction), as a decimal, as a ratio, as an indicated div
ision (a quotient), as an operator (multiplicative) and as a measure of continuous or dis
crete quantities (numbers with a given magnitude) (e.g. Behr et al., 1983; Confrey et al., 
2009; Kieren, 1976; Vamvakoussi, 2015). In some literature, these distinct interpretations 
are discussed as categories of rational numbers (Gabriel et al., 2023), as sub-constructs to 
rational numbers (e.g. Kieren, 1995; Wright, 2014), or as different ways of representing 
rational numbers (González-Forte et al., 2023). In this study we will use sub-constructs 
when referring to the different ways of understanding rational numbers. Moreover, the 
term “fraction” is not consistently used in the literature as a delimited sub-construct of 
rational numbers. Instead, it is sometimes used more broadly and interchangeably with 
rational numbers (e.g. Lee & Lee, 2023; Pedersen & Bjerre, 2021). This study follows 
Olive (1999) and consider fractions as one sub-construct of rational numbers.

Research indicates that students’ difficulties with developing an understanding of 
rational numbers partly because they attempt to apply properties of whole numbers to 
them, often referred to as the Natural Number bias (NNB) (e.g. Gabriel et al., 2023; Gon
zález-Forte et al., 2020; Stafylidou & Vosniadou, 2004; Van Dooren et al., 2015). This 
includes, for instance, the tendency to assess the magnitude of a rational number by con
sidering the sizes of the numerator and denominator independently (González-Forte 
et al., 2023; Stafylidou & Vosniadou, 2004). It also involves treating rational numbers 
as discrete entities, where there is always a fixed number before or after a particular 
number, despite the fact that there are infinitely many numbers between any two rational 
numbers (Gabriel et al., 2023). Properties of natural numbers are often based on additive 
thinking, whereas for rational numbers it is essential to depart from multiplicative think
ing (Van Dooren et al., 2015). This change from additive to multiplicative thinking has 
been shown to be demanding for students (e.g. Moss, 2005). Other difficulties arise with 
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equipartitioning (Confrey et al., 2009; Mack, 2001) particularly when representing equi
partitioning pictorially. Interestingly, this form of representation seems to be most fam
iliar to younger students when introduced to rational numbers (Viseu et al., 2021). Both 
equipartitioning and the development of multiplicative thinking are regarded as founda
tional for understanding rational numbers (Confrey et al., 2009; Simon & Tzur, 2004; 
Wright, 2014). It is also suggested that fraction is the most difficult sub-construct of 
rational number to understand. Conceptual understanding of fractions involves recog
nising their infinitely varied equivalent forms as different representations (e.g. 1/2, 2/4, 
5/10, 1234/2468, etc) (Gabriel et al., 2023).

To support students’ conceptual development with regard to sub-constructs of 
rational numbers, different pedagogical representations or explanatory models are 
often used (Lee & Lee, 2023; Norton & Wilkins, 2009; Van den Heuvel-Panhuizen, 
2003; Vig et al., 2014). The three most common models are the area, set and length 
models. In the area model, geometric shapes are subdivided into equal parts. The set 
model uses a set of countable objects subdivided into equal shares. Finally, the length 
model uses fractions strips, bars or the number line, all subdivided into a designated 
unit (Lee & Lee, 2023; Van den Heuvel-Panhuizen, 2003). As explanatory models poss
ibly only refer to specific properties of a concept rather than the full abstract idea of the 
concept, their use may create confusion and even contradictions and cognitive conflicts 
(Ahl & Helenius, 2021; Vig et al., 2014). It has also been shown to be important to use 
tasks that will help students overcome NNB. For instance, fraction comparison tasks 
that cannot be solved using knowledge of natural numbers have been found to be 
helpful (e.g. comparing 2/3 and 4/9 instead of 5/8 and 3/6) (Gabriel et al., 2023 Gonzá
lez-Forte et al., 2023). Similarly, tasks that require multiplicative rather than additive 
thinking have been shown to be beneficial (Van Dooren et al., 2015).

In the present study, primary focus is on students’ use of and shift between different 
representations. The mapping of what conceptual understanding is, specifically concern
ing rational numbers, has served as the foundation for selecting and designing tasks. 
However, these distinctions will not be further detailed in the analysis or results.

Method

In order to explore students’ conceptual considerations during problem solving, 24 stu
dents from grades 2, 5 and 6 were asked to solve tasks expected to be mathematical pro
blems to them. The problem-solving process was analysed with a focus on students’ use 
of and shift between representations in relation to specific sub-constructs of rational 
numbers.

Selection of students

The study was conducted in collaboration with a primary school in a small Swedish town 
with which there was an established contact, and involved teachers in grades 2, 5 and 
6. The school is regarded as an ordinary Swedish primary school where most students 
live nearby in a catchment area including neighbourhoods of varied socioeconomic 
status, however not including any extremes. Students in these three classes (and their 
legal guardians) were asked if they were willing to solve some mathematical problems 
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in pairs and to be filmed while doing this. As most students were willing to participate, 
the three class teachers were asked to select eight students each to form couples that were 
likely to be able to cooperate and to share their thoughts with each other. There were no 
other criteria for selection, and the teachers were for example clear about have selected 
students with a varied level of mathematical competence.

Ethics

The research follows Good Research Practice (Swedish Research Council, 2017). 
Informed consent was accordingly collected in written form from the students’ and 
their legal guardians. In compliance with the Act concerning ethical review of research 
in Sweden (The Ethics Review Act SFS 2003:460, 2003), the research has not undergone 
ethical review since this is not required for the type of data collected in this study.

Selection and design of mathematical problems

In line with the purpose of the study, the objective of the selection and design process was 
to identify tasks that would present reasonably challenging mathematical problems for 
the students. While the primary goal for the students may be to solve the problem, the 
design of mathematical problems should also take into consideration that the activities 
provided should also offer opportunities for learning (Ainley et al., 2006). Four main 
principles guided the selection and design of mathematical problems used in the study. 

. The solution method, consisting of a number of steps required to be performed to 
solve the task, included one or several (not necessarily major) steps expected to be 
new to the students.

. The level of challenge needed to be both reasonable and varied, ensuring that students 
with different levels of competence could all meet a challenge in some of the problems.

. The problems would represent various explanatory models related to rational 
numbers.

. The problems should generate a need to shift between different representations of the 
concept rational numbers in the solution process.

The design process was based on these principles, as well as previous research and the 
researchers’ experience with students’ understanding of rational numbers. There were 
two parallel design processes, one for grades 5 and 6 and another for grade 2 students.

Problem-solving sessions
The students’ teachers suggested pairs of students to work together at the school, ensur
ing that each pair would be made up of students likely to cooperate during the problem- 
solving activities. The first author of the paper attended each session. The problem- 
solving sessions were conducted in a small room adjacent to the classroom. The 
student pairs were presented with one problem at a time, on a paper, initially with no 
additional information, and were asked to think aloud (Schoenfeld, 1985). During the 
students’ problem-solving process, the primary role of the researcher was to make sure 
that each of the problems was correctly understood by the students. When necessary, 
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the researcher would ask the students about their thoughts and seek clarification of their 
reasoning. To potentially gain further insights into students’ work with mathematical 
problems and their conceptual understanding, the decision was taken to also use enabling 
prompts.

Enabling prompts (Sullivan et al., 2015) and well-prepared questions, both general and 
task-specific (Olsson & Granberg, 2024), have been shown to facilitate the implemen
tation of challenging tasks. In this study, the focus was on students’ understanding 
and use of representations, especially when it was obvious that the students would not 
reach a final, correct solution. This was done in two main ways: through simplifying 
or clarifying the problem, or through challenging an incorrect conclusion drawn by 
the students. These modes of interaction could also be linked to the inclusion or altera
tion of representations.

Procedure for analysis

Initially, the solution process of each pair of students for each of the tasks was categorised 
as mathematical problem solving or routine work. For the process to be considered math
ematical problem solving it was deemed necessary for there to be some indication, either 
through the students’ actions or their statements, that (part of) the solution method was 
new to them compared to prior experiences. All instances where students were involved 
in mathematical problem solving were then further analysed. Consequently, only those 
instances that appeared to be mathematical problems from the students’ perspective 
were included in the final analysis.

Secondly, using the concept of conceptual challenge (Jäder, 2022), the next step of the 
analysis procedure entailed indicating any instance in the solution process where a 
student showed signs of hesitation, struggle or resistance related to the mathematical 
concepts relevant for the task. These instances were further investigated as described 
below.

Thirdly, students’ use of and shift between representations of rational numbers were 
identified from the general description of their solution process. It was also noted how 
students interacted with these representations. This included whether the representation 
was provided by the problem formulation, or if it was a result of an interaction with the 
researcher such as simplification, clarifications or challenging (as previously mentioned). 
Additionally, it was noted if the representation was a result of the students’ own initiative, 
either as a trigger response to the problem, or as a means to reach a conclusion. Further
more, particular attention was paid to any transitions made between different 
representations.

Linked to each instance described in the third step, the properties of rational numbers 
that the students were considering were described. In addition, other conceptual aspects 
such as atypical objects or relations to other concepts were used to describe students’ 
work.

Summary of the analysis procedure: 

. Routine task or mathematical problem

. Indications of conceptual challenges

. Characterisation of students’ use of representations
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. Researchers’ interaction with students (none, simplify/clarify or challenge)

. Link to properties of the concept of rational numbers and to other aspects

Results

All but one of the tasks used for each of the grades were considered to be relevant math
ematical problems. However, one of the tasks used in grade 6 proved to be too challen
ging and was consequently excluded from the sessions performed later with grade 5- 
students. Four pairs of grade 2 students’ work with seven mathematical problems was 
analysed, while for grades 5 and 6, a total of eight student pairs’ work with seven math
ematical problems was analysed.

In summary, the results show that students in grade 2 as well as grades 5 and 6 demon
strate similar approaches to the shift between representations. In none of the problems 
did any of the students construct their own representations; instead they relied solely 
on the representation presented in the problem, such as symbols, texts, or pictures. 
On some occasions it was evident that students encountered an unfamiliar situation or 
representation in relation to the concept of rational numbers. For example, certain geo
metric figures illustrating rational numbers using the area model seemed to have been 
unfamiliar to the students. Similarly, the number line seemed unfamiliar to the students 
in relation to the concept of rational numbers. Moreover, it appeared that students were 
not able to commit to more than one explanatory model at a time, unless explicitly 
required to do so.

The students were observed to take their point of departure from what was well- 
known to them in the representations. In most cases, some kind of clarification or a sim
plification of the problem was necessary for the students as they were not able to reach a 
conclusion. In yet other instances, students reached a conclusion, albeit incorrect. In 
these instances, as outlined in the method, the researcher intervened during the 
problem-solving sessions, challenging the students’ conclusions. The results below are 
structured according to these three types of interactions: none, clarification/simplifica
tion and challenging.

No interaction

Grade 2 students to a higher degree were able to reach a correct conclusion on their own. 
This applied to almost half of the problems. To a lesser degree, grade 5 and 6 students 
arrived at a correct conclusion without any interaction with the researcher.

Figure 1 shows an example of a problem that grade 2 students were able to solve on 
their own.

The task emphasises the sub-constructs part-whole relationships and rational 
numbers as a quantity, as well as the relation between different representations for a par
ticular rational number. The challenges noted in this task concerned transferring 
between symbolic and different iconic representations regarding one third (subtask f). 
It was observed that students encountered a challenge using the number line as a rep
resentation. They often ignored the 0 and the 1 as representing numbers (i.e. considering 
the number line as a length model) and instead used these markings as start and end 
points of an interval that should be divided into equal parts, i.e. part of whole. To deal 
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with the challenge, students mostly used a strategy of exclusion to come up with a sol
ution. For example, in subtask (e) they concluded that the bottom right figure rep
resented one half, and then that the arrow did not divide the interval into two equal 
parts. As a result, they concluded that the relation was between the number line and 
the upper right square. This conclusion was drawn without considering the specific 
rational numbers represented by the number line and the square (i.e. they never men
tioned one-fourth). Students in grades 5 and 6 solved similar problems appropriate for 

Figure 1. Example of a problem solved by grade 2-students without support.
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their age in a comparable manner, without any support aside from clarification of the 
task itself rather than specific mathematical content. The students needed to be able to 
interpret rational numbers in relation to different explanatory models as well as 
different representations such as iconic, linear, symbolic and text. One area of focus 
was on rational numbers as a quantity, where the relationship between numerator and 
denominator makes up an indicated division (a quotient). However, students seemed 
to mainly regard rational numbers through either the area or the set model. Even 
though it might be possible that some students regarded the number line as another 
way of representing a part-whole relationship, they also needed to connect this to the 
set model.

Clarification/Simplification

There were several examples of both younger and older students needing clarification or 
simplification to move on. A first example of this is the problem attempted by the stu
dents in grades 5 and 6, which is presented in Figure 2.

When working on this problem, students needed to consider the rational number as a 
numerical value, where the relationship between numerator and denominator deter
mines its magnitude. It appeared that students had a hard time taking a step away 
from the often-used explanatory model of part-whole, where in this case the number 
line could represent the whole. For example, one pair of students discussed were to 
place 4/8 and focused only on the numerator in relation to the reference numbers (0, 
1) on the number line, never progressing in the solution process. The researcher then 
prompted the question “Approximately how much is four eighths?” The students then 
explained “You have eight squares and colour four of them … can it then be in the 
middle … you can think of the whole line as eight squares”. Possibly, students were unfa
miliar with referring to rational numbers in the context, necessitating clarifications.

For grade 2, an example of when simplification was needed can be seen in Figure 3. 
The figure shows two examples of problems where students needed support in the 
form of simplification to be able to reach a conclusion.

The problem to the left in Figure 3 focused on the set model, specifically the property 
parts of a number distinguished from parts of an area. All students began by concluding 
that Aya takes 10 sweets. Then it became challenging. It was obvious that the students 
were familiar with equipartitioning in relation to the area model but not to the set 
model. They expressed that “a fourth is when you divide in four equal parts”. 

Figure 2. Example of a problem where students needed clarification to solve the problem.
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However, the researcher needed to give the students a simplifying prompt saying that one 
fourth corresponds to “separating the candies into four piles and taking one of these 
piles”, whereafter the students realised that the number of sweets could be divided 
into four “piles” with an equal number of sweets in each pile. Thus, the students trans
ferred between using the representation parts of an area to parts of a number.

The mathematical question in the problem to the right in Figure 3 resembles the 
problem to the left. The picture of the chocolate cake could be regarded as representing 
parts of an area (i.e. the area model). The analysis of the previous problem had revealed 
that all students were most familiar with this model. However, none of the students used 
the picture of the chocolate cake as a representation in this manner. Instead, all students 
counted the bits of the chocolate cake and used this as representing parts of a number (i.e. 
set model). Furthermore, even though students had provided explanations of a fourth in 
the previous problem, analysis indicated that all four pairs needed some simplifying 
support from the researcher in terms of how to understand what a fourth meant in 
this context. Consequently, the property one fourth together with fractional parts of a 
number became the properties in focus in relation to the sub-construct of quotient. 
Once students had figured out the meaning of one fourth, the calculations were routine.

Challenging an incorrect conclusion

On some occasions, the students came to an incorrect conclusion which could be chal
lenged by the researcher, allowing the students to further explore the mathematical 
content and gain insights into the concept of rational numbers. One example of this 
can be seen in Figure 4, which is a problem presented to the 5th and 6th grade students.

The focus was on the property of rational numbers stipulating that the parts need to be 
of equal size (i.e. equipartitioning) particularly in relation to the area model. For example, 
students struggled to convince themselves or their partner that it was ok to “create a new 
part” in the second figure to see that ¼ was shaded. However, on several occasions the 
researcher needed to challenge the students further to make the necessary conceptual 
consideration, rather than leaving the problem with an incomplete or incorrect 
answer. Several of the pairs selected the figure d, leaving out one of the correct 

Figure 3. Examples of two problems where students required support in the form of simplification.
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choices. Even though students mentioned that it was important that the parts were of 
equal size, they did not consider this property when selecting the figure d as one of 
the five representing ¼. Additionally, the researcher challenged their answer by, for 
example, questioning why figure h but not figure a represents ¼. It was apparent that 
the way the parts were represented in the figure h was more typical for the students. 
Besides figure a, some of the other figures seemed to be less familiar or unfamiliar to 
the students, such as figure b, where the lack of a full vertical line dividing the square 
made the students hesitate as to how to describe the shaded part, unsure whether it rep
resents 1/3 or something else.

The approach these students took was similar to that of the students in grade 2 when 
they met a similar problem appropriate for their level of understanding.

Discussion

In line with our objectives, the results of this study show that students’ conceptual con
siderations vary depending on the mathematical problem they encounter. It’s unsurpris
ing that different mathematical problems produce different situations and, consequently, 
different conceptual considerations. This finding is now further supported by empirical 
data. Considering that a student’s use of and shift between representations in relation to a 
specific concept is an integral part of a student’s conceptual understanding (Duval, 2006; 
Wedman, 2020), it may be reasonable to assume that using different representations can 
lead to the creation of different opportunities to learn that prompt conceptual consider
ations and the utilisation of different properties of a concept. Assuming that conceptual 
considerations enhance students’ opportunities to develop an understanding of the 
mathematical concept in question (Hiebert & Grouws, 2007; Jäder, 2022; Zaslavsky, 
2005) we propose that a well-considered design of mathematical problems should incor
porate several components. This includes a requirement for students to transfer between 

Figure 4. Example of a problems where students were challenged when they initially reached an 
incorrect conclusion.
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various representations, incorporate atypical representations and make use of relevant 
explanatory models focusing on specific properties of a concept. Moreover, the design 
process should strive for the inclusion of encouragement for students’ conceptual con
siderations during the problem-solving process. These issues are further discussed below.

As our results show, it appears typical for students to start their problem-solving 
process by focusing on aspects of the situation that are familiar to them as well as the 
representations presented in the problem (e.g. symbols or figures). They seldom 
attempted to use other representations that were not explicitly presented in the 
problem. This outcome is unsurprising and aligns with previous findings showing that 
students favour familiar representations and solution methods in task-solving situations 
(e.g. Alcock & Simpson, 2002; Lithner, 2008; Presmeg, 1992). Knowing that this is an 
expected behaviour among students, it is essential to account for it when designing math
ematical problems. This ensures that students have the opportunity to explore the 
concept in focus through different representations (cf. Duval, 2006; Niss, 2006), facilitat
ing the need for them to transfer between different representations. This approach 
acknowledges that each representation may have the potential to highlight certain con
ceptual aspects, thus enriching students’ understanding through multiple perspectives. 
We argue that one way to do this is to explicitly include more than one type of represen
tation in the problem that requires reflection, such as the example in Figure 1. This type 
of design also seems to be fruitful for problems that students can work on independently. 
Conversely, problems that do not highlight different representations may limit students’ 
conceptual development.

This also relates to Wedman’s (2020) discussion concerning typical and atypical 
objects as an aspect of mathematical concepts. In our study we were able to identify fam
iliar representations in unfamiliar situations, as well as unfamiliar representations with 
respect to rational numbers. For example, the use of the number line as a representation 
of rational numbers as quantities (Figure 1 and 2), or the use of somewhat unfamiliar 
figures as representation of rational numbers as part-whole (Figure 4). As can be seen 
from the results, although students explicitly mentioned the particular property of equi
partitioning, they initially were not mindful of this property, especially when dealing with 
somewhat unfamiliar figures or when required to divide figures into parts themselves. 
However, the results indicate that as students’ conclusions are challenged, the situation 
where unfamiliar representations are used in relation to the area model seem to trigger 
students’ conceptual considerations and shed light on the notion of parts being of equal 
size in terms of different geometric figures and on equipartitioning (cf. Viseu et al., 2021). 
This strengthens the assumptions that it is valuable to consider the use of representations 
that are atypical in a specific situation, alongside more commonly used ones.

A situation that was evidently unfamiliar to the majority of students, both younger 
(grade 2) and older (grades 5 and 6), was the use of the number line to represent the 
length model. Students frequently ignored the 0 and the 1 as numerical representations 
on the number line instead using these markings as beginning and end points of an inter
val to be divided into equal parts. In essence, instead of applying the length model, they 
applied the principals of the area or the set models to the number line. This works as long 
as focus is on the sub-construct of fractions (i.e. focusing on the part-whole aspect), or 
when the number line represents values from 0 to 1. However, understanding rational 
numbers as quantities with given magnitudes requires the use of other explanatory 
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models (cf. Kieren, 1976, 1995). This highlights the importance of not only considering 
which particular representations are used in the design of mathematical problems but 
also considering their alignment with explanatory models and consequently how the rep
resentation is used (e.g. whether number lines include values above 1 and/or values below 
0). A representation, for example corresponding to an explanatory model, may support 
the visualisation of specific properties of a concept, rather than the entire concept itself 
(Ahl & Helenius, 2021; Vig et al., 2014). Although it is common to use the area and set 
models in introductory work on rational numbers, there is a need to broaden this 
approach to allow students to explore relationships and connections with all sub-con
structs of rational numbers. For instance, the area and set models may hamper students 
from overcoming NNB because most situations involving these models can be seen from 
an additive perspective (cf. Gabriel et al., 2023; González-Forte et al., 2023). Therefore, 
there is potential in developing teaching and learning through the use of a linear expla
natory model. However, if we want students to experience the linear model, its construc
tion needs to be carefully distinguished from that of the area model.

Moreover, it appears to be beneficial to enhance students’ conceptual considerations 
through additional support, beyond the written instructions provided by the mathemat
ical problem. In this study, two forms of interaction (clarification/simplifications and 
challenging) were used and demonstrated effectiveness without reducing the mathemat
ical problem to a routine task. Instead, they supported the creation of a problem at an 
appropriate level of difficulty, presenting reasonable challenges while encouraging con
ceptual considerations. The absence of interaction between the student and the 
researcher (or teacher) may indicate that the mathematical problem works well on its 
own. However, there are instances where students’ deliberations are limited to choices 
rooted in basic ideas rather than fostering conceptual considerations that might 
develop a deeper understanding of the concept. Therefore, when designing mathematical 
problems for learning we recommend that the design process includes suggestions for 
student-teacher interaction depending on students’ approach to the problem, akin to 
the enabling and extending prompts advocated by Sullivan et al. (2015) or questions 
suggested by Olsson and Granberg (2024). Furthermore, this provides teachers with a 
greater opportunity to gain insights into students’ understanding and progress (Mitchell 
& Clarke, 2004), which is a crucial aspect of a formative approach to teaching.

Limitations, implications, and conclusions

The findings of this study are based on a convenience sampling of twenty-four students, 
from the same school. However, given that the selection of students solely considered stu
dents possibilities to cooperate with each other, rather than for example level of mathemat
ical competence, understanding of rational numbers or representational skills, and that the 
focus is on the relationship between students and mathematical problems rather than on 
specific student behaviours, it is reasonable to assume that the observed relationships can 
be extrapolated to discuss conceptual considerations in a wider sense, with regard to stu
dents and problems in general. Conducting the study in a clinical setting rather than in a 
classroom may lead to some loss of authenticity, such as how students would react to 
student-teacher interaction or their attitudes towards approaching these problems. None
theless, the setting enabled a necessary and structured set up facilitating a more thorough 
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analysis. The results are clearly dependent on the interaction between researcher and stu
dents, which is why we have tried to explain these interactions following specific guidelines 
and limited to distinct categories (such as request for clarification of thoughts, simplifica
tions of the problems or challenging a conclusion) in a transparent manner.

The results in this study strengthen and expand the research field’s knowledge about 
the importance of including atypical representations, and situations, to foster students’ 
conceptual understanding of rational numbers, as well as the importance of incorporat
ing teacher interaction already in the design and planning of teaching. In addition, our 
study has strengthened Wedman’s (2020) theoretical assumption of five aspects of con
ceptual understanding, by showing how three of these aspects, typical and atypical 
objects, definitions and properties and representations, manifest in empirical settings.

While the study does not specifically focus on students’ learning, it may be reasonable 
to conclude that in order to effectively guide students’ learning, teachers need to be aware 
of their progress and have insights into their conceptual understanding. Considering 
these limitations, we propose that our findings indicate that it is beneficial for teachers 
to incorporate multiple and diverse representations, including those that are atypical 
for the students, as well as representations used in different explanatory models. 
Further, it seems reasonable for teachers to be prepared to guide students in their 
problem-solving process by providing additional instructions such as simplifications 
and challenges tailored to individual students, which may not be possible to include in 
the original written problem.
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