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Abstract This paper focuses on one aspect of mathematical competence, namely
mathematical reasoning, and how this competency influences students’ knowing of
physics. This influence was studied by analysing the mathematical reasoning require-
ments upper secondary students meet when solving tasks in national physics tests.
National tests are constructed to mirror the goals stated in the curricula, and these goals
are similar across national borders. The framework used for characterising the mathe-
matical reasoning required to solve the tasks in the national physics tests distinguishes
between imitative and creative mathematical reasoning. The analysis process consisted
of structured comparisons between representative student solutions and the students’
educational history. Of the 209 analysed tasks, 3/4 required mathematical reasoning in
order to be solved. Creative mathematical reasoning, which, in particular, involves
reasoning based on intrinsic properties, was required for 1/3 of the tasks. The results in
this paper give strong evidence that creative mathematical reasoning is required to
achieve higher grades on the tests. It is also confirmed that mathematical reasoning is
an important and integral part of the physics curricula; and, it is suggested that the
ability to use creative mathematical reasoning is necessary to fully master the curricula.
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Introduction

Mathematics and physics are historically closely intertwined, and many mathematical
concepts have been developed to describe the laws of nature. How this relationship
becomes apparent in a school context and how it might affect students’ learning have
been discussed from different points of view in educational research. Some of the
discussions focus on how physics can influence the learning of mathematics, referred to
below as physics in mathematics. Other discussions focus on the learning of physics
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and are concerned with various aspects of its relation to mathematics, and this is
referred to as mathematics in physics.

Physics in Mathematics

Blum & Niss (1991) discuss the great value of maintaining a close relationship between
mathematics and physics in school because physics can provide good examples for
validating mathematical models. In a paper by Doorman &Gravemeijer (2009), the authors
discuss the advantage of learning mathematical concepts through mathematical model
building and how examples from physics allow for a better understanding of the
concepts. Hanna & Jahnke (2002) refer to e.g. Pólya (1954) and Winter (1978) when they
discuss the advantage to use arguments from physics in the teaching of mathematical
proofs. The importance of using physics to facilitate students’ learning of various mathe-
matical concepts is also discussed by Marongelle (2004), who concludes that using events
from physics can help students to understand different mathematical representations.

Mathematics in Physics

Tasar (2010) discusses how a closer relation between the school subjects of mathemat-
ics and physics can contribute to the understanding of physics concepts and can help
ensure that students already understand the mathematical concepts needed in physics.
Similar suggestions are done by Planinic, Milin-Sipus, Katic, Susac & Ivanjek (2012),
who, in their study of high school students’ success on parallel tasks in mathematics
and in physics, concluded that students’ knowledge is very compartmentalized and that
stronger links between the mathematics and physics education should be established.
According to Basson (2002), a closer relationship might also decrease the amount of
time physics teachers spend on redoing the mathematics students need in physics.
Michelsen (2005) discusses how interdisciplinary modelling activities can help students
to understand how to use mathematics in physics and to see the links between the two
subjects. Redish & Gupta (2009) emphasised the need to understand how mathematics
is used in physics and to understand the cognitive thinking of experts in order to teach
mathematics for physics more effectively to students. Basson (2002) mentions how
difficulties in learning physics not only stem from the complexity of the subject but also
from insufficient mathematical knowledge. Bing (2008) discusses the importance of
learning the language of mathematics when studying physics. Nguyen & Meltzer
(2003) analysed students’ knowledge of vectors and concluded that there is a gap
between students’ intuitive knowledge and how to apply their knowledge in a formal
way, which can be an obstacle when learning physics. Tuminaro (2002) analysed a
large body of research, and categorised studies concerning students’ use of mathematics
in physics according to the researchers approach to the area. The four categories are: (i)
the observational approach; (ii) the modelling approach; (iii) the mathematical knowl-
edge structure approach and (iv) the general knowledge approach.

Mulhall & Gunstone (2012) describe two major types of physics teacher, the
conceptual and the traditional. Mulhall & Gunstone conclude that a typical teacher
in the conceptual group presumes that students can solve numerical problems in
physics without a deeper understanding of the underlying physics theories. A typical
opinion among teachers in the traditional group is that physics is based on mathematics
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and that a student develops an understanding of the physics by working with numerical
problems. Doorman & Gravemeijer (2009) notice (with reference to Clement, 1985 and
Dall’Alba, Walsh, Bowden, Martin, Masters, Ramsden & Stephanou, 1993) that most
of the attention in both physics and mathematics is on the manipulations of formulas
instead of focusing on why the formulas work.

Learning Physics

When discussing learning in physics, there is, of course, a large body of additional
literature that is relevant to consider depending on what questions one is studying. A lot
of research about teaching and learning physics has been conducted by what Redish
(2003) refers to as the physics education research (PER) community. When studying
how individuals learn physics, certain cognitive principles have to be considered
(Redish, 2003). This approach is discussed by diSessa (e.g. in 2004), who emphasises
the micro levels but from a knowledge-in-pieces perspective. This perspective is not
restricted to the learning of physics, but is also applicable in mathematics. According to
this micro-perspective, there are many different levels at which a concept can be
understood, and contextuality has to be taken into consideration. Thus, in order to
understand a student’s learning, his or her understanding of a particular concept has to
be studied in a variety of different contexts (diSessa, 2004).

Mathematics in the Syllabuses

The upper secondary school in Sweden is governed by the state through the curriculum
and the syllabuses. During the last decades, there has been a gradual change towards a
stronger focus on process goals, and they are present in the curriculum from 1994
(Swedish National Agency for Education [SNAE], 2006). These shifts are influenced by
and similar to international reforms that aim at enriching both mathematics and physics.
Content goals are complemented with process goals as those in the National Council of
Teachers of Mathematics Standards (NCTM, 2000), and in the Next Generation Science
Standards (NGSS Lead States, 2013) where it, e.g. is explicated that ‘emphasis is on
assessing students’ use of mathematical thinking and not on memorization and rote
application of problem solving techniques’ when high school students use mathematics
in physics (NGSS, 2013, HS-PS1-7, Matter and its Interactions). In the framework for
PISA 2009, it is emphasised to focus on the mastery of processes and the understanding
of concepts (Organisation for Economic Co-operation and Development [OECD],
2009), and in the Trends in International Mathematics and Science Study (TIMSS)
framework, the thinking process is explicated as one of the two dimensions to be
assessed (Garden, Lie, Robitaille, Angell, Martin, Mullis et al., 2006). For a more
comprehensive discussion about the reforms and their backgrounds, see e.g. Boesen,
Helenius, Bergqvist, Bergqvist, Lithner, Palm & Palmberg (2014, pp. 73–74). A central
part of the reforms concerns reasoning and its central role in problem solving and in the
individual’s development of conceptual understanding

In the Swedish syllabuses, the aims and objectives of each specific course are
detailed and it is indicated what knowledge and skills students are expected to have
acquired upon completion of the various courses. According to the general syllabus in
physics, the teaching should aim to ensure that the students, e.g. ‘develop their ability to
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quantitatively and qualitatively describe, analyse and interpret the phenomena and
processes of physics in everyday reality, nature, society and vocational life and to
develop their ability with the help of modern technical aids to compile and analyse data
as well as simulate the phenomena and processes of physics’ 1 (SNAE, 2000).
Mathematics is thus explicitly required when making quantitative descriptions of
phenomena and implicitly required when analysing data. In the particular syllabuses
for the two courses, Physics A and Physics B, mathematics is mentioned more
explicitly. Physics A is a prerequisite for Physics B, and in the latter course, there are
higher demands both on the mathematical processing and on the conceptual under-
standing of physics phenomena (SNAE, 2000).

The literature review shows that there is a significant amount of educational research
on the relation between the school subjects of mathematics and physics that support the
necessity of different mathematical competencies when learning physics. However, no
studies on what type of mathematical reasoning (see ‘Theoretical Framework’) is
required of physics students were found. The impact of mathematical reasoning on
mathematical learning has been discussed and studied from multiple perspectives.
Schoenfeld (1992), for example, points out that a focus on rote mechanical skills leads
to poor performance in problem solving. Lesh & Zawojewski (2007) discuss how
emphasising low-level skills does not give the students the abilities needed for math-
ematical modelling or problem solving, neither to draw upon interdisciplinary knowl-
edge. Students lacking the ability to use creative mathematical reasoning thus get stuck
when confronted with novel situations and this hamper their possibilities to learn
(Lithner, 2008). Since mathematics is a natural part of physics, it is reasonable to
assume that the ability to use mathematical reasoning is an integral part of the physics
knowledge students are assumed to achieve in physics courses. Therefore, it should be
desirable to get a picture of the mathematical reasoning requirements students encoun-
ter and need in order to master or fully master the physics curricula.

Theoretical Framework

The definition of mathematical reasoning and the framework that is used for the
analyses in this paper were developed by Lithner (2008) through empirical studies on
how students engage in various kinds of mathematical activities. The initial purpose of
Lithner’s studies was to analyse students’ rote thinking and how this may lead to
learning difficulties in mathematics. As a result, reasoning was defined as ‘the line of
thought adopted to produce assertions and reach conclusions in task solving’ (Lithner,
2008, p. 257). Mathematical reasoning is used as an extension of a strict mathematical
proof to justify a solution and is seen as a product of separate reasoning sequences.
Each sequence includes a choice that defines the next sequence, and the reasoning is the
justification for the choice that is made. The mathematical foundation of the reasoning
can either be superficial or intrinsic. The accepted mathematical properties of an object
are of different relevance in different situations. This leads to a distinction between
surface properties and intrinsic properties, where the former have little relevance in the
actual context and lead to superficial reasoning and the latter are central and have to be

1 Author’s translation
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taken into consideration in the given context (Lithner, 2008, p. 260–261). Depending
on whether this reasoning is superficial or intrinsic, the framework distinguishes
between imitative reasoning and creative mathematical-founded reasoning. The frame-
work has been used in previous studies to categorise tasks according to mathematical
reasoning (e.g. Palm, Boesen & Lithner, 2011) or to categorise actual students’
mathematical reasoning in problematic situations (e.g. Sumpter, 2013).

Creative Mathematically Founded Reasoning

Creativity is an expression often used in different contexts and without an unequivocal
definition (for a discussion, see Lithner (2008, p. 267–268)). Creativity within the
framework that is used in this paper takes the perspective of Haylock (1997) and Silver
(1997) in which creativity is seen as a thinking process that is novel, flexible and fluent.
Creative mathematical reasoning2 (CR) fulfils all of the following criteria: ‘i. Novelty.
A new reasoning sequence is created or a forgotten one is recreated. ii. Plausibility.
There are arguments supporting the strategy choice and/or strategy implementation
motivating why the conclusions are true or plausible. iii. Mathematical foundation. The
arguments made during the reasoning process are anchored in the intrinsic mathemat-
ical properties of the components involved in the reasoning.’ (Lithner, 2008, p. 266).

Imitative Reasoning

Imitative reasoning is categorised as memorised reasoning (MR) or algorithmic rea-
soning (AR). The arguments for the chosen solution method (i.e. the reasoning) can be
anchored in surface mathematical properties. ‘MR fulfils the following conditions: i.
The strategy choice is founded on recalling a complete answer. ii. The strategy
implementation consists only of writing it down.’ (Lithner, 2008, p. 258).

If some kinds of calculations are required to solve the task, there is often no use in
remembering an answer. Instead, it is more suitable to recall an algorithm. The term
‘algorithm’ is used here in a broad sense and refers to all the procedures and rules that
are needed to reach the conclusion of a specific type of task, not just the calculations
required to reach a conclusion. ‘AR fulfils the following conditions: i. The strategy
choice is to recall a solution algorithm. The predicted argumentation may be of different
kind, but there is no need to create a new solution. ii. The remaining parts of the
strategy implementation are trivial for the reasoned, only a careless mistake can lead to
failure.’ (Lithner, 2008, p. 259).

Depending on the argumentation for the choice of the used algorithm, AR can be
subdivided into the three different categories of familiar algorithmic reasoning (FAR),
delimiting algorithmic reasoning and guided algorithmic reasoning, e.g. text-guided
(GAR) or person-guided. In this study, only the categories of FAR and GAR are used.
FAR fulfils: ‘i. The reason for the strategy choice is that the task is seen as being of a
familiar type that can be solved by a corresponding known algorithm. ii. The algorithm
is implemented.’ (Lithner, 2008, p. 262). GAR fulfils: ‘i. The strategy choice concerns
identifying surface similarities between the task and an example, definition, theorem,

2 Originally called creative mathematical founded reasoning.
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rule or some other situation in a text source. ii. The algorithm is implemented without
verificative argumentation.’ (Lithner, 2008, p. 263).

Local and Global Creative Mathematical Reasoning

Lithner (2008) introduces a refinement of the category (CR) into local CR (LCR) and
global CR (GCR) that captures some significant differences between tasks categorised
as CR. This subdivision has been further elaborated by other scholars, e.g. Boesen,
Lithner & Palm (2010) and Palm et al. (2011). In LCR, the reasoning is mainly MR or
AR but contains a minor step that requires CR. If instead there is a need for CR in
several steps, it is called GCR, even when some parts contain AR and/or MR.

Non-mathematical Reasoning

The analytical framework in this paper introduces an additional category called non-
mathematical reasoning (NMR). This consists of those tasks that can be solved by
using just the knowledge of physics. Physics knowledge here refers to relations and
facts that are discussed in the syllabuses and textbooks of the physics courses but not in
the mathematics courses, for example, the fact that angle of incidence equals angle of
reflection. In the same way, the concept of mathematics refers to school mathematics
that is introduced in mathematics courses for students at upper secondary school or the
mathematics assumed to already be known according to the curricula.

Research Question

By analysing the mathematical reasoning required to solve tasks in national physics tests,
the idea is to capture the mathematical reasoning that is required to master or fully master
the physics curricula. It is explicated in the physics syllabuses that the use of mathematics
is incorporated in the goals and that the national tests are the government’s way of
concretising the physics curricula. Based on the definitions in the definitions of the
theoretical framework described above, the following research questions were asked:

& Is mathematical reasoning required of upper secondary students to solve national
physics tests from the Swedish national test bank?

& If mathematical reasoning is required, what is the distribution of physics tasks
requiring CR compared to tasks that are solvable with IR?

Physics Tests from the National Test Bank

About 12 % of all students in upper secondary school in Sweden are enrolled in the
Natural Science Programme or the Technology Programme (SNAE, 2011). In both
programmes, the course Physics A is compulsory whereas the more advanced course—
Physics B—is elective. The aim of the physics courses is that the students should attain
various goals specified in the syllabuses. Written tests are commonly used as an
assessment of the students’ achievements, and a student’s grade in a course depends
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on how well the student has achieved the goals for the course (SNAE, 2000). The
descriptions of the goals and the different grade levels are quite brief in the syllabuses,
and the intention is that the syllabuses and curriculum should be processed, interpreted
and refined locally in each school. In order to accomplish equivalent assessment in
physics, the SNAE provides assessment supports, including the National Test Bank in
Physics. In this way, the physics tests can be considered as the government’s
concretisation of the syllabuses for physics. The character and design of the tasks in
the tests stress what is covered in the taught curriculum. The tests also influence the
teachers’ interpretation of the syllabuses, which by extension, stresses what the students
focus on (Ministry of Education and Research, 2001; SNAE, 2003).

The material in the National Test Bank is classified and can be accessed via the
Internet only by authorised users. The material consists of single tasks to choose from
or complete tests that comprise the goals for Physics A or Physics B. In total, there are
847 tasks to choose from and 16 complete tests for each of the Physics A and Physics B
courses, all classified. The first tests are from 1998 and the latest is from spring 2011.
Besides the classified examples, there are five tests for each course that are open for
students to practice on. These give the students an idea of what the tests look like and
what is required when taking a test (Department of Applied Educational Science,
2011). As opposed to national tests in mathematics, the teachers are not obligated to
use the test from the National Test Bank in physics. However, it is common that these
tests are used as a final exam in the end of the physics courses (SNAE, 2005).

Since the beginning of the national testing programme, there has been a change in the
design of the tasks on the tests. In the beginning, there was more or less only one correct
solution to each task. This has evolved into a higher degree of open tasks that can be
solved using different approaches. For the past 10 years, the final task has been an Baspect-
task^ that is assessed according to the achieved level in different assessment groups. These
aspect tasks include initial parts that are easily accessible for most students and parts that
are a challenge designed for more proficient students. The task is designed to be easy to
start with, but it should also include a challenge to more proficient students. The first
3 years of the testing programme (1998–2000), there was an experimental part included in
the tests, but this part is not included in the analysis in this study.

Method

This study analysed the December 1998, May 2002, December 2004, May 2005 and
December 2008 tests for the Physics A course and the May 2002, May 2003, May 2005,
February 2006 and April 2010 tests for the Physics B course. The first tests chosen were
the unclassified tests so that examples could be discussed in the present article. These
tests are unclassified by the National Educational Agency to serve as representative
interpretations of the syllabuses and the curriculum. To have five tests from each course,
the remaining tests were randomly selected among the classified tests.

Categorisation of Mathematical Reasoning Requirements

To categorise physics tasks according to reasoning requirements, solutions to respective
task are required. Whether a task is solvable by IR or if the solution requires CR
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depends on the educational history of the solver (in this case, the test taker) (cf.
Björkqvist, 2001; English & Sriraman, 2010; Lesh & Zawojewski, 2007; Schoenfeld,
1985; Wyndham, Riesbeck & Schoult, 2000). The required reasoning refers to what
kind of reasoning is sufficient to solve a task, and the framework described above
allows for a determination of this.

The solutions used in the analysing procedure were constructed by the researcher.
These solutions were determined to be plausible student solutions based on the
researcher’s experience as a physics teacher together with access to the solution
manuals in which proposed solutions are given. Some of the solutions in the manual
are authentic student solutions because several of the tasks had been tested on real
students before the tasks were included in a test.

Because no students were involved in the present study, there was no actual
learning history to consider. Studies on mathematics education suggest that
most of the learning activities consist of students working with their textbooks
(SNAE, 2003). In an evaluation of physics education in lower secondary
school, it was found that the teaching is guided by the textbooks (Swedish
Schools Inspectorate, 2010). In addition, The Ministry of Education and
Research (2001) has discussed the fact that textbooks and assessments are
seen as two of the most important tools in mathematics education. In a
qualitative study of a physics class, Engström (2011) showed that the textbook
still plays an important role in guiding the education, and the TIMSS Advanced
2008 report showed that teachers mostly use the textbook in physics courses to
choose and solve problems from (SNAE, 2009a). Based on the findings de-
scribed above, the students’ prior knowledge in physics and mathematics in this
study was equated with the content of the textbooks used in their courses.
There are, of course, other factors that play a part in individual students’
previous experience, including tasks discussed during classes and/or experience
of physical principles outside the classroom. The simplification used in this
study was necessary due to the complexity of students’ educational history and
was reasonable according to the discussion above.

This study considered textbooks in both mathematics and physics. When taking
the tests, the students are allowed to use a handbook designed for the physics
courses in upper secondary school. The access to formulas and definitions in this
handbook had to be taken into account when analysing the tasks in this study. The
textbooks and the handbook were chosen among the books commonly used in the
physics courses in upper secondary school. The books used for categorisation of the
tasks in Physics A tests were ‘Ergo Fysik A’ (Pålsgård, Kvist & Nilson, 2005a) and
‘Matematik 3000 Kurs A och B’ (Björk & Brolin, 2001). For tests in Physics B,
‘Ergo Fysik B’ (Pålsgård, Kvist & Nilson, 2005b) and ‘Matematik 3000 Kurs C och
D’ (Björk & Brolin, 2006) were used. The handbook chosen was ‘Tabeller och
formler för NV- och TE- programmen’ (Ekbom, Lillieborg, Larsson, Ölme &
Jönsson, 2004). Even if not all students in the Swedish upper secondary school
are using the books above, they are a reasonable assumption for the education
history of the average student. The procedure for analysing the tasks was given by
the chosen framework, and an analysis sheet was used to structure the procedure.
The steps comprised in the procedure are outlined in Table 1 and are used earlier in
e.g. Palm et al. (2011).
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Validity and Reliability

The resulting categorisation of tasks, theoretically established according to the
abovementioned procedure, is only meaningful if it represents the reasoning actually

Table 1 Detailed outline of the analysis procedure

Step I. Analysis of the assessment task—answers and
solutions

Step II. Analysis of the assessment task—task
variables

The first step in the procedure consisted of
constructing a plausible student solution. The
solution was then looked at from a mathematical
perspective and categorised according to relevant
mathematical subject areas that were required for
the solution, e.g. asking if the solution included
working with formulas, algebra, diagrams, solving
equations, etc. Tasks with solutions not including
any mathematical object were identified and
categorised as NMR tasks. This categorisation is an
addition to the original procedure used in previous
studies. Mathematical objects refer to entities to
which mathematics is applied. The first step also
includes the identification of ‘real-life’ events in
the task formulation. This identification is relevant
because a described situation in the task could give
a clue to a known algorithm that solves the task
(see the Weightlifter (a) example (Table 4))

The next step in the procedure was to analyse the
solution according to different task variables. The
first variable was the explicit formulation of the
assignment. The second variable was what
information about the mathematical objects was
given explicitly in the task compared to what
information the students need to obtain from the
handbook or that they have to assume in order to
reach a solution. The third task variable concerns
how the information was given in the task, e.g.
numerically or graphically or whether it was
interwoven in the text or explicitly given
afterwards. The task could also include keywords,
symbols, figures, diagrams or other important hints
the student can use to identify the task type and
which algorithm to use. These features were
gathered into the fourth task variable

Step III. Analysis of the textbooks and
handbook—answers and solutions

Step IV. Argumentation for the requirement of
reasoning

The third step in the analysis process focused on the
textbooks and the handbook. Formulas used in the
solution algorithm were looked for in the
handbook, and the available definitions were
compared to the constructed solution to the task.
The textbooks were thoroughly looked through for
similar examples or exercises that were solved by a
similar algorithm. The theory parts in the textbooks
were also examined to see whether they contained
any clues as to solve the task

In the final step, the researcher produced an argument,
based on steps I to III, for the categorization of the
reasoning requirement for every task. In order to be
categorised as FAR, there must have been at least
three tasks considered as similar in the textbooks. It
could then be assumed that the students will
remember the algorithm, which might not be the
case if there are fewer occasions. Three similar
tasks were found to be an appropriate number in
the study by Boesen et al. (2010). If the task was
similar to a formula or definition given in the
handbook, it was assumed that the student could
use this as guidance in order to solve the task.
Thus, only one similar and previously encountered
example or exercise was required for tasks
categorised as requiring GAR. To be categorised as
requiring MR, tasks with the same answer or
solution should have been encountered at least
three times in the textbooks. It was then assumed
that the student could simply write the same answer
on the test. If none of the above reasoning types
were sufficient for solving the task and there was a
need to consider some intrinsic mathematical
property, the task was categorised as requiring
some kind of CR
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used by students while solving the tasks. Meaningful representation can be achieved
with the well-documented criteria required for each category along with a routine for
agreement and discussions about the categorisation. Higher reliability could also be
reached with a less complex phenomenon, e.g. by defining creative mathematical
reasoning as solutions consisting of more than three steps. However, this would give
a low validity for the meaning of creative mathematical reasoning.

The validity of the analysis is dependent both on the appropriateness of the
procedure used for the categorisation and how closely the categorisations resemble
students’ actual reasoning. The appropriateness is argued for above, and an argument
for concordance is based on results from a study by Boesen et al. (2010). In that study,
real students’ actual mathematical reasoning used to solve tasks on mathematics tests
were compared to the theoretically established reasoning requirements for the same
tasks based on the same procedure that was used in the present study. It was shown that
only 3 % of the tasks were solved with less creative reasoning than what was judged to
be required, and 4 % of the tasks were either solved with more creative reasoning or not
solved at all. These results indicate that the categorisation of reasoning, as described
here, provides meaningful results. The construction of a plausible student solution is
one of the four steps in the analysing procedure, and the author’s experience with
physics students and physics tests can be considered similar to the experience with
mathematics students and mathematics tests in Boesen et al. (2010). Therefore, previ-
ous results demonstrating the method’s validity can be considered to be valid for the
present study. The categorisation of all tasks in the present study was made by the
author. During the analysis process, there were tasks where the categorisation was
straightforward and tasks where the categorisation could be considered as borderline
cases. Typical examples of the different kinds of categorisation were continuously
discussed in a reference group consisting of a mathematics education researcher well
familiar with the analysis procedure and a mathematician. All difficult categorisations
were discussed in the group, thus no inter-reliability estimate was calculated.

Data and Analyses

The tasks in Table 2 were chosen to represent and illustrate the different types of
analysis and the categorisations of the physics tasks. The idea was that the required
reasoning would be represented by the constructed solutions. All of the tasks are chosen
from publicly available national tests. Normally, subtasks are treated separately because
the task variables and the analysis of the textbooks can be different. The first three tasks
are examples where no hesitation concerning the categorisations occurred. The three
subsequent examples are of tasks were the analysis was not as straightforward. The
analyses are displayed in detail in Tables 3, 4, 5 and 6.

Results

The analysis showed that mathematical reasoning was required when solving
physics tasks. Of the 209 analysed tasks, there were 76 % that required
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mathematical reasoning. The distribution of tasks categorised as requiring CR
(CR tasks) and tasks solvable with IR (IR tasks) were a bit unbalanced. Of the
tasks requiring mathematical reasoning, 46 % were CR tasks whereas the
remaining ones were IR tasks (Table 7).

The result also showed some differences in the categorisation with respect to
the Physics A and Physics B courses. There were slightly more NMR tasks and
CR tasks in the Physics B tests than in the Physics A tests. A more distinct
difference was seen among the IR tasks, with the greater number of these tasks
in Physics A tests (Table 7).

A majority of the IR tasks (78 %) were solvable with FAR and the rest were
solvable with GAR. The CR tasks were separated into LCR and GCR. In
general, Physics B tests consisted of more GCR tasks than Physics A tests,
and the amount of LCR tasks was almost the same (Table 8). When comparing
tests from different years, the analysis showed a notable variation in the

Table 2 Six examples of the tasks that were analysed

Task 1 (“The Weightlifter (a)”) Task 2 (“The Weightlifter (b)”)

A weightlifter is lifting a barbell that weighs 219 kg. 

The barbell is lifted 2.1 m up from the floor in 5.0 s. 

a) What is the average power the weightlifter 

develops on the barbell during the lift?

A weightlifter is lifting a barbell that weights 219 kg. 

The barbell is lifted 2.1m up from the floor in 5.0 s.  

b) What is the average power the weightlifter 

develops on the barbell when he holds it above his 

head for 3.0 s?

Task 3 (“The Syringes”). Task 4 (“Charges on a thread”)

A patient is going to get an injection. The medical 

staffs are reading in the instructions that they are 

supposed to use a syringe that gives the lowest 

pressure as possible in the body tissue. Which of the 

syringes A or B shall the staff choose if the same 

force, F, is applied and the injection needles have the 

same dimensions?”

Argue for the answer 

In order to determine the charge on two small, 

light silver balls, the following experiment was 

conducted. The balls, which were alike, weighed 

26 mg each. The balls were threaded onto a nylon 

thread and were charged in a way that gave them 

equal charges. The upper ball levitated freely a 

little distance above the other ball. 

There was no friction between the balls 

and the nylon thread. The distance 

between the centres of the balls was 

measured to 2.9 cm. What was the 

charge on each of the balls?”

Task 5 (“The seesaw”) Task 6 (“Walking in water”)

How can Lars, 70 kg, and his son Anton, 28 kg, 

place themselves on a 3.5 m long seesaw so that it 

stays in equilibrium?

You are walking out into the water at a beach with a stony 

bottom. In the beginning, it hurts very much under your 

feet when you are walking on the stones, but when the 

water gets deeper it starts to feel less. When the water 

reaches you up to your chest, the stones do not feel painful 

anymore. Explain this.

Mathematical Reasoning Requirements in Physics Tests 1143



proportions of the different mathematical reasoning types. There was no con-
sistency among the tests with respect to this analysis (Table 8).

Table 3 The first two steps in the analysis procedure for tasks 1 to 4

I. Analysis of the assessment task—answers and
solutions

II. Analysis of the assessment task—task variables

Task
1

A typical solution from an average student could
be derived by the relation between power and
the change of energy over a specific period of
time. In this task, the change in energy is the
same as the change of potential energy for the
barbell. Multiply the mass of the barbell by the
acceleration of gravity and the height of the lift
and then divide by the time to get the power
asked for. The mathematical subject area is
identified as algebra, in this case, working with
formulas. The identification of the situation to
lift a barbell can trigger the student to use a
certain solution method and is, therefore,
included in this analysis as an identified ‘real-
life’ situation

The assignment is to calculate the average power
during the lift. The mass of the barbell, the
height of the lift and the time for the lift are all
considered as mathematical objects. As
mentioned above, an object is the entity one is
doing something with. In this example, all of
the objects are given explicitly in the
assignment in numerical form. In the
presentation of the task, there is also an
illustrative figure of the lift

Task
2

It is not necessary to use any mathematical
argumentation in order to solve this task, and
solution can be derived on physical reasoning
alone. There is no lifting and, therefore, no
work is done, and this means that no power is
developed. This task is a typical example of an
analysis resulting in the NMR categorisation

Not a step to consider as this task is categorised as
NMR

Task
3

To solve this task, the student can use the relation
between pressure, force and area (p = F / A).
Neglecting the hydrostatic pressure from the
injection fluid, if the force applied to the syringe
is the same then it is the area of the bottom that
affects the pressure. The larger the area, the
lower the pressure. The staff should choose
syringe B. The mathematical subject area is
identified as algebra, such as to work with
formulas and proportionality

The assignment is to choose which syringe that
gives the minimum pressure and to provide an
argument for this choice. Only the force is given
as a variable, and this is represented with a
letter. Key words for the students can be force
and pressure. The situation is illustrated with a
figure in which it appears that syringe B has a
greater diameter than syringe A

Task
4

To derive a solution, the forces acting on the upper
ball must be considered. Because it is levitating
freely, it is in equilibrium and, according to
Newton’s first law, the net force on the ball is
zero. The forces acting on the ball are the
downward gravitational force, F = mg, and the
upwards electrostatic force from the ball below,
F = k·Q1Q2 / r

2. Setting these expressions
equal to each other and solving for Q1 (and
assuming that Q1 = Q2) will give the charges
asked for. The mathematical subject area is
identified as algebra, such as to work with
formulas and to solve quadratic equations

The assignment is to calculate the charges on the
balls. The mass of the balls and the distance
between their centres are mathematical objects
given numerically and explicitly in the
assignment. The information about the charges’
equal magnitude is textual and is a part of the
description of the situation. There is also a
figure of the balls on the thread illustrating the
experiment
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Table 4 The last two steps in the analysis procedure for tasks 1 to 4

III. Analysis of the textbooks and
handbook—Answers and solutions

IV. Argumentation for the requirement of reasoning

Handbook: Formulas for power, P = ΔW/Δt, with
the explanation ‘ΔW = the change in energy
during time Δt’; for ‘work during lift’, Wl = mg h,
with the explanatory text, ‘A body with weight mg
is lifted to a height h. The lifting work is …’; and
for potential energy with the text ‘A body with
mass m at a height h over the zero level has the
potential energy Wp = mg h’

Mathematics booka: Numerous examples and
exercises of how to use formulas, e.g. on pages
28–30

Physics bookb: Power is presented as work divided by
time, and in on example, work is exemplified as
lifting a barbell. An identical example is found on
page 130. An example of calculating work during a
lift in relation to change in potential energy is
found on page 136. Exercises 5.05 and 5.10 are
solved by a similar algorithm

The analysis of the textbooks shows that there are
more than three tasks similar to the task being
categorised with respect to the task variables, and
these tasks can be solved with a similar algorithm.
As mentioned in the method section, if the students
have seen tasks solvable with a similar algorithm at
least three times, it is assumed that they will
remember the solution procedure. This task is then
categorised as solvable using IR, in this case FAR

Not a step to consider as this task is categorised as
NMR

Not a step to consider as this task is categorised as
NMR

Handbook: The relation p = F/A is defined
Mathematics book: Proportionalities are discussed

and exemplified but are not used for general
comparisons

Physics book: One example about how different areas
affect the pressure and one exercise that is solved in
a similar way by using a general comparison
between different areas and pressure

There is only one example and one exercise that can
be considered similar with regard to the task
variables and the solution algorithm. The formula
is in the handbook, but there has to be some
understanding of the intrinsic properties in order to
be able to use the formula in the solution. This task
is, therefore, considered to require some CR, in this
case GCR, in order to be solved

Handbook: Coulomb’s law, F = k Q1Q2 / r
2, with

explanation ‘r = distance between the charges and
… k = … ≈8.99 109 N m2/(As)2’

Mathematics book: Numerous examples and exercises
of how to use formulas, e.g. on pages 28–30, and
of solving quadratic equations on page 269

Physics book: Coulomb’s law is introduced and
exemplified, and there are at least three exercises of
calculating the charge on different objects using
this law. One example is of a levitating charge
(page 227), but in this case in a homogeneous
electrical field instead of due to the electrostatic
force from another charged particle. Two exercises
of similar situations as in the example. Newton’s
first law is formulated in the theory text (page 91)
where it is shown that the net force has to be zero if
an object for example is at rest, and this relation is
used on several different occasions in the book.
The gravitational force is introduced on pages 92
and is then used throughout the book

Considering the mathematical reasoning, there are
more than three examples or exercises in the
textbooks where the same algorithm has been used,
i.e. to put two expressions equal to each other and
then solve for one unknown variable, including
taking the square root. However, there are not three
or more examples considering the physics context.
To solve the task, the student must first identify the
force situation in order to know which expressions
to equate. After having discussed this task in the
reference group, it was concluded that analysing
the physics context is not a part of the
mathematical reasoning. Although mathematical
reasoning is necessary to be able to solve the task,
it is not sufficient, and although the mathematical
reasoning can be considered as some kind of
algorithmic, the task was categorised as requiring
LCR, where the minor step is to analyse the
physics

a The mathematics textbook in all examples is Björk & Brolin (2001)
b The physics textbook in all examples is Pålsgård et al. (2005a)
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Discussion and Implications

The national tests are used in the present study to represent the mathematical reasoning
that is required to master or fully master the physics courses according to the syllabuses
and curriculum. Because of the way the national physics tests are constructed, students
that have fully mastered the physics curricula should have the ability to solve any of the
tests for the related course. The fact that slightly less than one third of the tasks on some
of the 10 tests in this study require CR (Table 8) does not weaken the overall result that
CR is significant for fully mastering the physics curricula.

The fact that a majority of the tasks require mathematical reasoning shows that the
ability to reason mathematically is an important competence and an integral part when
taking physics tests. Mathematical reasoning is defined as a process to reach

Table 5 The first two steps in the analysis procedure for tasks 5 and 6

I. Analysis of the assessment task—answers and
solutions

II. Analysis of the assessment task—task variables

Task
5

This task can be solved using the equilibrium of
torque (moment of force), M = Fr, and the
knowledge that the torque, with respect to
Anton, must have the same magnitude as the
torque with respect to Lars. The forces that act
on the seesaw are of the same magnitudes as the
gravitational forces, F = mg, on Lars and
Anton, respectively. Assuming that Anton is
placed 1.60 m from the rotation axis, one gets
the equation FLars r = FAnton 1.60, which will
give the position Lars must be in when the
equation is solved. As in the examples above,
the mathematical subject area was identified as
algebra, more specifically to work with
formulas and equations. A seesaw is a real-life
situation often used as an example in mechanics
and, therefore, was included in the analysis

The assignment is to show where on the seesaw
Anton and Lars can sit when it is in equilibrium.
Mathematical objects that are given numerically
in the assignment are the masses of Anton and
Lars. In addition, the total length of the seesaw
is given and there is a picture of a seesaw
without any people on it

Task
6

To solve this task, the students are supposed to
refer to Archimedes’ principle. The greater the
volume of the body under the water, the lager
the buoyant force from the water. Assuming the
body is in equilibrium at each step, the larger
the buoyant force becomes, the smaller the
normal force from the stones becomes and thus
there is less pressure from the stones. Therefore,
it hurts less when the water level reaches higher
on the body. This relation can be argued for
using the formulas for Archimedes’ principle,
formulas for pressure and the equilibrium of
forces. The mathematical area could then be
considered to involve formulas and
proportionality. Following the solution proposal
and the scoring rubric provided with the test,
however, there is no need to use any
mathematical relations or formulas to argue for
the answer

The assignment is to explain why it does not hurt
as much when you are in deeper water. No
mathematical objects are given explicitly in the
task. The situation refers to a real-life event of
walking in water. Bathing is a common situa-
tion referred to when discussing Archimedes’
principle. The depth of the water is also indi-
cated in the assignment as important
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conclusions when solving tasks. When students have the ability to use creative
mathematical reasoning, they know how to argue and justify their conclusions and
they can draw on previous knowledge. As it is not enough to only use IR to solve a
majority of the tasks in a test, but especially CR is required, a creative mathematical
reasoning competency can be regarded decisive when students develop their physics
knowledge. At first glance, it might be reasonable to assume that CR is required to get a
higher grade on a test, and this hypothesis was tested in a follow-up study (Johansson,
2013). It was shown in that study that in order to get one of the higher grades, students

Table 6 The last two steps in the analysis procedure for tasks 5 and 6

III. Analysis of the textbooks and
handbook—answers and solutions

IV. Argumentation for the requirement of reasoning

Handbook: Formula for Torque, M = Fr, with
explanatory text ‘r is the perpendicular distance
from the rotation axis to the line of action of the
force. At equilibrium ∑ Fr = ∑ M = 0’ together
with a figure of M around a rotation axis with F
and r marked

Mathematics book: Numerous examples and exercises
on how to use formulas (e.g. on pages 28–30) and
how to solve equations

Physics book: The relation for torque is formulated
with words in the theory text. When introducing
torque, the theory also refers to a seesaw both in
text and with images (page 105). Two examples
use the formula for torque as defined in the
handbook. One of the examples is similar to this
task except that one does not have to assume any
distance. There are some exercises using a similar
algorithm, but these are for calculating masses (via
force) from given distances instead of distances
from given masses

The algorithmic procedure to solve a task involving a
seesaw has been seen both in the theory text and in
the examples. There are plenty of exercises for how
to handle expressions and solve equations with one
unknown variable. The difference in this case is
that none of the distances are given in the task.
There are, therefore, two unknown variables in the
expression, and one of the distances has to be
assumed, by using the information about the total
length of the seesaw. After discussion about this
task, it is categorised as requiring LCR. The minor
step in this case is to realise that one has to make an
assumption of one of the distances in order to be
able to solve the task, and this is regarded as
demanding some intrinsic mathematical
understanding

Handbook: Archimedes’ principle is formulated with
the words, ‘The buoyant force on an object is equal
to the weight of the displaced fluid’ that appear on
the same page as the formula for pressure, p = F/A

Mathematics book: Numerous examples and exercises
on how to use formulas, e.g. on pages 28–30, and
exercises on proportionality on pages 73 and 75,
but these are not used for general comparison

Physics book: Archimedes’ principle is formulated
with words and as an expression (page 171), and
there is one example that relates volume to the
buoyant force

Following the scoring rubric of what is demanded of a
student to solve this task, there is no need to refer to
the formulas or to use them to argue for the given
explanation. The student needs to mention
Archimedes’ principle and that the buoyant force
increases when the volume of the body in the water
increases, but he/she does not need to explain why
or show how the volume increase is related to the
force increase. They also have to mention some-
thing about how this increased buoyant force de-
creases the normal force, but according to the
scoring rubric, there is no need to use the relation
for pressure to show why this decreased normal
force makes it hurt less. The space given to write
the answer also indicates that a few lines are suf-
ficient as an answer. After discussing this task and
the minimum solution that is required of a student,
it is decided that the reasoning is mainly physical
and that mathematical reasoning is not necessary to
solve this task. It is then categorised as solvable
with NMR
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had to solve tasks requiring CR in five out of eight national physics tests. For the three
tests not requiring CR, students’ actual results on these three tests were compared to
which tasks they had solved, and it was concluded that even though it was possible to
get a higher grade without using CR, this rarely occurred.

The conclusion that CR is vital to students’ development of physics knowledge is
based on the fact that Swedish national physics tests are a concretisation of the goals in
the syllabuses and in the curriculum of what should have been achieved after complet-
ing the physics courses. The goals and the subject descriptions in the Swedish
syllabuses and curriculum of what it means to know physics are quite rich and highly
in accordance with the content and cognitive domains in the TIMSS Assessment
framework (Garden et al. 2006; SNAE, 2009b). Although this study deals with the
Swedish settings, the alignment with TIMSS suggests that these results are relevant to
an international context.

As mentioned in the section ‘Learning Physics’, individuals’ understanding of the
relevance of different concepts in various contexts has to be examined in order to
discuss what has been learned. The present study does not claim anything about
individual students’ learning. However, it is shown that mathematical reasoning in

Table 7 Categorisation results,
overview

Number of tasks NMR % CR % IR %

Physics A 103 21 33 46

Physics B 106 26 38 36

Total 209 24 35 41

Table 8 Categorisation results, detailed

Number
of tasks

NMR
n

NMR
%

FAR
n

GAR
n

IR
%

LCR
n

GCR
n

CR
%

GCR
%

IR +
LCR
%

Physics A Dec 1998 20 3 15 6 6 60 4 1 25 5 80

Physics A May 2002 20 4 20 3 3 30 5 5 50 25 55

Physics A Dec 2004 19 4 21 7 1 42 2 5 37 26 53

Physics A May 2005 19 5 26 6 2 42 4 2 32 11 63

Physics A Dec 2008 25 6 24 12 1 52 4 2 24 8 68

Total Physics A 103 22 21 34 13 46 19 15 33 15 64

Physics B May 2002 18 2 11 7 0 39 5 4 50 22 67

Physics B May 2003 19 5 26 8 1 47 3 2 26 11 63

Physics B May 2005 23 7 30 4 3 30 5 4 39 17 52

Physics B Feb 2006 23 10 43 8 0 35 2 3 22 13 43

Physics B April 2010 23 4 17 5 2 30 4 8 52 35 48

Total Physics B 106 28 26 32 6 36 19 21 38 20 54

Total 209 50 24 66 19 41 38 36 35 17 59
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general and CR in particular is vital when students solve tasks in physics. Since CR is
based on an intrinsic understanding of a concept and the ability to use the concept in
novel situations, this is in line with diSessa’s (2004) view of learning as a development
of the ability to use a concept in shifting contexts.

This study is situated within the ‘Mathematics in Physics’ research field (see
‘Introduction’). The literature suggests how mathematical knowledge influences
the learning of physics and the importance of understanding how mathematics
is used in physics. From the results in this study, mathematical reasoning can
be concluded to be a central aspect of this mathematical knowledge. In partic-
ular, CR is decisive to fully master the physics curricula. To achieve this CR
competency, students must be provided opportunities to develop and practice
creative mathematical reasoning. This could take place both in the physics
classes and in the mathematics classes. According to references discussed in
the ‘Introduction’ as well as in the ‘Method’ sections, it is common that
students in physics classes solve routine tasks and focus on manipulations of
formulas instead of focusing on the conceptual understanding. Similar conclu-
sions are drawn regarding the mathematics classes; it is found that the focus is
on algorithmic procedures and no extensive opportunities to develop different
kinds of CR are provided (e.g. Boesen et al., 2014).

It is known that tests have an indirect role for students learning, both as
formative, when students get feedback on their solutions, and as summative,
when the character of the tasks give students indications of what competences
are sufficient for handling mathematical tasks. Analyses of teacher-made math-
ematics tests have shown that these focused largely on IR, in contrast to the
national mathematics tests, which had a large proportion of tasks requiring CR
(Palm et al., 2011). In view of the result of Boesen et al. about the situation in
the mathematics classes and of Palm et al. about teacher-made mathematics
tests, it is reasonable to assume that the teacher-made tests represent respective
mathematics teacher’s practice. This assumption is further supported by one of
the results in Boesen (2006), where teachers indirectly claim that their assess-
ments align with the instructional practice. In the same way, it is assumed that
physics teachers’ practices are reflected in the physics tests they construct. As
discussed above, the classroom situations in physics and mathematics can be
considered similar. Thus, a reasonable conclusion is that there is a similar
discrepancy regarding physics tests, i.e. that there is a larger proportion of
CR in the national physics tests than there is in the teacher-made tests.

From the discussion above, it seems that although the intense efforts that
have been made to change practice through policy changes, discussed in the
‘Mathematics in the Syllabuses’ section, students are provided limited opportu-
nities to develop the creative mathematical reasoning competency that is re-
quired to fully master the physics curricula. It can be assumed that the
implementation work of the new curricula in school, concretised through na-
tional tests, has not worked as intended. The importance of the relation between
mathematics and physics has been known for a long time. What has been found
in this study is the fact that the ability to mathematically argue and reason is
decisive in order to fully master the physics curricula, and this should have
implications on how the education is organised and carried out.
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