Dependence between creative
and non-creative mathematical
reasoning in national physics tests

HELENA JOHANSSON

Itis known from previous studies that a focus on rote learning and procedural mathe-
matical reasoning hamper students’ learning of mathematics. Since mathematics is
anintegral part of physics, itis assumed that mathematical reasoning also influences
students’ success in physics. This paper aims to study how students’ ability to reason
mathematically affects their success on different kinds of physics tasks. A descriptive
statistical approach is adopted, which compares the ratio between conditional and
unconditional probability to solve physics tasks requiring different kinds of mathe-
matical reasoning. Tasks from eight Swedish national physics tests for upper secon-
dary school, serve as a basis for the analysis. The result shows that if students succeed
ontasksrequiring creative mathematical reasoning, the probability to solve the other
tasks on the same test increases. This increase is higher than if the students succeed
on tasks not requiring creative mathematical reasoning. This result suggests that
if students can reason mathematically creatively, they have the ability to use their
knowledge in other novel situations and thus become more successful on tests.

Many scholars discuss the importance to understand how mathematics is
used in physics and how students’ mathematical knowledge affects their
learning of physics (e.g. Basson, 2002; Bing, 2008; Nguyen & Meltzer,
2003; Redish & Gupta, 2009). Basson (2002), for example, mentions how
difficulties in learning physics not only stem from the complexity of
the subject but also from insufficient mathematical knowledge. diSessa
(1993) notices how students, who have studied physics, can solve a quan-
titative task in physics and still give an inconsistent qualitative analysis
of the same task. A quantitative task refers to when the task is posed in
explicitly quantitative terms and the solution can be attained through cal-
culations using appropriate physics laws. A qualitative task on the other
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hand refers to when the solution requires an analysis of the posed physical
situation i.e. what will occur and/or why. It is shown that students’ intui-
tive understanding of the physical world is quite robust and that their
solutions to qualitative problems often contradict the basic physics prin-
ciples (ibid.). Redish (2003) states that practice, in the meaning that stu-
dents just solve various tasks, is necessary but not enough to get a deeper
understanding of the underlying physics concepts. Students must learn
both how to use the knowledge and when to use it. The same conclusion
holds for learning mathematics, shown by e.g. Schoenfeld (1985) in his
study of how students become good problem solvers in mathematics; as
well as by Lesh and Zawojewski (2007), who discuss how working with
mathematical modelling develops students’ understanding and learning
in mathematics. Michelsen (2005) also addresses benefits from model-
ling activities. He discusses how interdisciplinary modelling activities
can help students to understand how to use mathematics in physics and
discover the connections between the two subjects.

During studies of how students are engaging in different mathemati-
cal activities, Lithner (2008) has gradually developed a framework for
characterising students’ mathematical reasoning. The framework dis-
tinguishes between creative mathematical founded reasoning (CR) and
imitative reasoning (IR). The former one refers to a reasoning that is
anchored in intrinsic mathematical properties and that includes some
novelty to the reasoner. If instead the anchoring is in surface proper-
ties and the reasoning consists of remembering an answer or following
a process step by step, it is IR. Mathematical reasoning is one aspect of
mathematical knowledge, and thus assumed to be one competence that
influences students’ learning of physics. Johansson (2015) shows e.g. that
to pass Swedish national physics tests, students have to reason mathe-
matically; and to fully master the Swedish physics curricula students
have to be able to use CR. To examine further how students’ ability to
reason mathematically influences how they succeed in physics, the aim
in thisstudy is to analyse if there are any dependencies between students’
success on different physics tasks, different with respect to which type of
mathematical reasoning that is required to solve the tasks.

Conceptual framework

Lithner define reasoning as "the line of thought adopted to produce
assertions and reach conclusions in task solving” (Lithner, 2008, p.257).
Mathematical reasoning is used as an extension of a strict mathematical
proof to justify a solution and is seen as a product of separate reason-
ing sequences. Each sequence includes a choice that defines the next
sequence, and the reasoning is the justification for the choice that is
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made. The mathematical foundation of the reasoning can either be super-
ficial or intrinsic. The accepted mathematical properties of an object are
of different relevance in different situations. This leads to a distinction
between surface properties and intrinsic properties, where the former
have little relevance in the actual context and lead to superficial reason-
ing and the latter are central and have to be taken into consideration in
the given context (Lithner, 2008). As mentioned in the introduction,
this framework was developed during empirical studies of how students
engage in various mathematical activities. A strength of the framework
is that it is not restricted to any specific context. As long as the students
have to use some kind of mathematics to come up with a solution, they
are assumed to reason mathematically. Therefore, Lithner’s framework is
considered suitable for categorising the kinds of mathematical reasoning
that are required in the physics tests.

Creative mathematically founded reasoning

Creativity is an expression often used in different contexts and without
an unequivocal definition (for a discussion see Lithner, 2008, p. 267-268).
For the definitions of the different kinds of reasoning, the perspective of
Haylock (1997) and Silver (1997) is adopted. This implies that creativity
is seen as a thinking process that is novel, flexible and fluent (Lithner,
2008). CR fulfils all of the following criteria:

i. Novelty. A new reasoning sequence is created or a forgotten one
is recreated.

ii. Plausibility. There are arguments supporting the strategy choice
and/or strategy implementation motivating why the conclusions
are true or plausible.

iii. Mathematical foundation. The arguments made during the rea-
soning process are anchored in the intrinsic mathematical proper-
ties of the components involved in the reasoning.

(Lithner, 2008, p. 266).

Imitative reasoning
The arguments that motivate the chosen solution method (i.e. the reason-
ing) could be anchored in surface mathematical properties. Reasoning
categorised as IR fulfils
i. The strategy choice is founded on recalling a complete answer.
ii. The strategy implementation consists only of writing it down.
(Lithner, 2008, p. 258)
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or

i. The strategy choice is to recall a solution algorithm. The predicted
argumentation may be of different kind, but there is no need to
create a new solution.

ii. The remaining parts of the strategy implementation are trivial
for the reasoned, only a careless mistake can lead to failure.

(Lithner, 2008, p. 259)

Local and global creative mathematical reasoning

Lithner (2008) introduces a refinement of the category CR into local CR
(LCR) and global CR (GCR) that captures some significant differences
between tasks categorised as CR. This subdivision has been further ela-
borated by other scholars, e.g. Boesen, Lithner and Palm (2010) and Palm,
Boesen and Lithner (2011). In LCR, the reasoning is mainly IR but con-
tains a minor step that requires CR. If instead there is a need for CR in
several steps, it is called GCR.

Non-mathematical reasoning

In the application of the framework, an additional category, defined in
Johansson (2015), is used. This category consists of those tasks that can
be solved by only using physics knowledge; and this category is called non-
mathematical reasoning (NMR). Physics knowledge is here referred to as
relations and facts that are discussed in the physics courses and not in
the courses for mathematics, according to the syllabuses and textbooks,
e.g. that angle of incidence equals angle of reflection.

Related concept

There has been a discussion in the mathematical educational research
society whether procedural knowledge should be considered only as
superficial and rote learned or viewed from a wider perspective (Baroody,
Feil & Johnson, 2007; Star, 2007). Hiebert and Lefevre (1986) defined
procedural knowledge as consisting of the formal language of mathema-
tics, as well as of the algorithms and rules for completing mathematical
tasks. There is an agreement that procedural knowledge is important,
but not enough, when students learn mathematics (e.g. Baroody et al.,
2007; Gray & Tall, 1994; Hiebert & Lefevre, 1986; Star, 2007). However,
there is also an argumentation about whether deep procedural know-
ledge could exist without involvement of conceptual knowledge (Baroody,
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Feil & Johnson 2007; Star, 2005, 2007). In the description of the frame-
work used for characterising required mathematical reasoning, Lithner
(2008) discusses different aspects of procedures and concepts. Although
the definitions of the reasoning categories do not include references
to procedural or conceptual knowledge, one could assume some rela-
tions between CR and conceptual knowledge on one hand and IR and
procedural knowledge on the other hand.

Research questions

Based on Lithner’s (2008) framework, physics tasks in Swedish national
tests have been categorised with respect to mathematical reasoning
requirements in Johansson (2015). The main results showed that students
must use some kind of mathematical reasoning to solve three-fourth of
the tasks in a test; and that one-third of the tasks require CR. From the
outcome, one of the interests that arose was if there is a dependence
between how students succeed on physics tasks requiring different kinds
of mathematical reasoning. To study a possible dependence the following
research questions are posed:

- Does the success on a physics task that requires CR affect the pro-
bability to succeed on any other task requiring either IR or CR in
the same test?

— Does the success on a physics task solvable with IR affect the pro-
bability to succeed on any other task requiring either IR or CR in
the same test?

The answers to both questions are intuitively yes, but has to be verified
in order to answer the following two research questions:

- How strong is the dependence in each case?

- Are there any difference in effects on tasks requiring different
mathematical reasoning?

Method
Physics in the Swedish School

There are mainly two different physics courses in the Swedish upper
secondary school. Physics A, which is compulsory for all natural science
and technology students, and Physics B that is compulsory for natural
science students and an optional continuation for technology students. In
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the current curricula (from 2011) the names of the courses have changed
to Physics 1 and Physics 2, and some of the areas previously included
in Physics B are now in Physics 1. During the last decades, there has
been a gradual change towards a stronger focus on process goals, and
they are present in the curriculum from 1994 (Swedish National Agency
for Education, 2006). Content goals are complemented with process
goals, and teaching in the subject of physics should for example aim at
helping students develop knowledge of the concepts, theories, models
and working methods of physics. Students should be given opportuni-
ties to develop a scientific approach to the surrounding world, as well as
to analyse and solve problems through reasoning based on concepts and
models. Mathematics is explicitly required when making quantitative
descriptions of phenomena and implicitly required when analysing data
(Swedish National Agency for Education, 2000). Similarities between
the upper secondary syllabuses for physics in Norway and Sweden are
identified and discussed in the TIMSS Advanced 2008 report (Lie, Angell
& Rohatgi, 2010). It is further discussed by Grenmo and Onstad (2013),
how students’ mathematical performance in the Nordic countries form a
specific Nordic profile, distinct from other countries.

National physics tests for both physics courses are provided by the
Swedish National Agency for Education through the National Test
Bank as an assessment support to accomplish equivalent assessment for
upper secondary physics students throughout the country. Most of the
tests are classified to not authorised users. There are a few tests open to
the public, which for example students can look upon to get an idea of
what is expected. After a test is used, students’ results are collected and
compiled via the National Test Bank.

Data

The data comprise tasks from eight physics tests from the Swedish
National Test Bank. The tests are the May 2002, December 2004 and
May 2005 tests for the Physics A course and the May 2002, May 2003, May
2005, February 2006, and April 2010 tests for the Physics B course. These
tests were chosen because the tasks in the tests already had been catego-
rised according to mathematical reasoning requirements, and that there
were available data about students’ results on each of the tasks. Student
data were used by permission from Department of Applied Educational
Science at Umed University, the department in charge of the National
Test Bank in Physics. No names of the students are present, instead each
student has got an ID-number, and thus data could be considered ano-
nymous. The number of students for each test varies from 996 to 3666.
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There are in total 119 of the 162 physics tasks on the tests that require
mathematical reasoning to be solved, and thus included in this study, i.e.
no NMR tasks are included.

Statistical method

To decide whether there exists a dependence between success on a par-
ticular task R, the reference task, and the success on another task X, it
was decided to compare the conditional probability P(X=1|R=1) to solve
X with the unconditional probability P(X=1) to solve X. That is, the ratio

P(X=1|R=1)

P(X=1) M

was estimated, where X = 1 and R = 1 denote that the tasks have been
fully solved, respectively. If this ratio is larger than 1, the probability to
succeed on the task X is higher if students successfully have solved the
task R than if they have not. The probabilities in (1) are estimated by com-
puting the arithmetic means from the available student data for each test.
To estimate P(X=1|R=1), the number of students who had solved both X
and R were divided by the number of students who had solved R. The
probability P(X=1) was estimated by calculating the number of students
who had solved X by the total number of students who had taken the test.

In order to decide if the effect of a calculated dependence is large
enough to consider, odds ratio is used as a measure of the effect-size. Odds
ratio is defined as

P(X=1|R=1)
1-P(X=1|R=1)
P(X=1|R=0)
1-P(X=1|R=0)

©)

where P(X=1|R=1) is as defined above and P(X=1|R=0) denotes the condi-
tional probability to solve X when R is not solved, i.e. students have only
partly or not at all solved the task R. The effects are divided into small,
medium and large, and associated with the calculated magnitudes of odds
ratiosas follows; small = 1.5, medium =3.5 and large = 9.0. These values could
be considered as a rule of thumb (e.g. Cohen, 1988; and Hopkins, 2002).
The paired sample t-test was used for significance testing of the diffe-
rence between the means of the dependencies that are calculated when
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CR-tasks are used as reference tasks and when IR-tasks are used as refe-
rence tasks. In order to decide if asignificant difference is to be accounted
for, Cohen’s d is used as an index of the effect size. Effect sizes around 0.2
could be considered small, effect sizes around 0.5 are medium and sizes
above 0.8 indicate large effects (Cohen, 1988).

Implementation

For each test, a CR task was first chosen as reference task. The CR tasks
were chosen so that they should not be the most difficult ones, i.e. they
should not require too many analysing steps to be solved. The decisions
were based on the formulation of the assignments and on what solu-
tions that were required. For most of the tests the chosen CR task is a
GCR task. On two tests the tasks categorised as GCR were judged to
only occur among the most difficult tasks, thus LCR tasks were chosen
instead. There was now one CR task on each test and this task was used
asRin (1). The ratio was then estimated for every other task that required
mathematical reasoning in each test, respectively. Since it is the effect on
success with respect to mathematical reasoning that is studied, tasks not
requiring mathematical reasoning, i.e. NMR tasks, were excluded from
the analysis. To analyse the same ratio (1), but with an IR task as the refe-
rence task, it was decided to choose an IR task with a position approxi-
mately in the middle of the tests and relatively close to the already chosen
CR task. This choice are based on that a task’s positon in a test indicates
how difficult the task is supposed to be to the students. The ratio (1) was
estimated in the same way as above for every task requiring mathematical
reasoning in each test, respectively, with the chosen IR tasks as R in (1).
Below follows two examples of different tasks used as reference tasks in
the Physics A 2002 test. Task 6 (figure 1) has previously been categorised
as solvable with IR, and task 12 (figure 2) as requiring LCR. The method
for the categorisation is thoroughly described in Johansson (2015). Two
examples of the categorisation process are provided in appendix, example
A-1 and example A-2.

To account for possible effects due to the positions of the tasks, it was
decided to do some more calculations of the ratio (1) by choosing a GCR
task that occurs earlier in the test than the IR task previously used as refe-
rence task. If there were no such GCR task, an IR task that came later in
the test than the previously used CR task should be used as reference task.
If there were no such IR task, an IR task positioned as close as possible to
the previously used CR task was used as reference task. There are now
three different ratios, i.e. with different reference tasks, for every test.
To be able to statistically compare the ratios, the measure of effect size
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Read the press cutting below.

Watch out!

A study of cause of death and injuries among the population in the South
Pacific shows that most accidents are caused by falling coconuts and over-
turned palm trees. This is nothing to laugh about. A four kilos coconut that
comes loose from a 25 meter high palm tree, reaches a speed of 80 km/h
and hits the ground - or an unfortunately placed head — with a pressure
that corresponds to one ton. The study is performed by Doctor Herman
Oberli at the hospital in Honiara, Solomon Islands. (TT-DPA)

Is it true that a coconut can reach 80 km/h after a 25 m high fall?

Figure 1. Task 6

In order to determine the charge on two small, light
silver balls, the following experiment was conducted.
The balls, which were alike, weighed 26 mg each. The
balls were threaded onto a nylon thread and were
charged in a way that gave them equal charges. The
upper ball levitated freely a little distance above the
other ball. There was no friction between the balls and
the nylon thread. The distance between the centres of
the balls was measured to 2.9 cm.

What was the charge on each of the balls?

Figure 2. Task 12

(2) is calculated for respective ratio. The two calculated ratios (1) with an
IR task and a CR task as close as possible were furthermore used in the
paired sample t-test in order to decide if the means differ significantly.

Analysis and result

In table 1 the calculations for respective task on the Physics A 2002 test
are displayed. The estimated values for the ratios in the first row are the
results when the CR task, task number 12 (figure 2), is used as reference.
Similarly, the estimated values for the ratios in the second row are the
results with the IR task, task number 6 (figure 1), used as reference. By
comparing the two estimated ratios for each task it was noticed that
the ratio in most cases was larger when the CR-task was the reference,
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compared to when the IR-task was used in the calculations. For example,
the estimated values on row 1 and 2 for task number la in table 1 are 1.21
and 1.14, respectively, which shows that it is more likely to succeed on
task la if you solve the CR task than if you solve the IR task.

Table 1. Ratios according to (1) for the tasks in the Physics A 2002 test with the
tasks 12 and 6 as reference tasks

Task 1la 1b 2a 2b 3 4 5 6 7 8
(IR) (IR) (NMR) (IR) (IR) (LCR) (LCR) (IR) (NMR) (NMR)
12 1.21 147 1.20 1.44 1.08 1.36 1.49
6 1.14 1.21 1.12 1.19 1.07 1.15 R

9 10 11 13 14G 14VG 15  16a  16b
(NMR) (LCR) (IR) (LCR) (GCR) (LCR) (GCR) (GCR) (GCR) (GCR)

12 1.29 1.87 R 1.27 1.95 4.76 2.28 1.68 2.81

6 1,19 1.24 1.49 1.17 1.31 1.69 1.37 1.22 1.43

Corresponding values for e.g. task 13 in table 1 are 1.27 and 1.17, respec-
tively, which indicates the same result. The corresponding tables contain-
ing the estimated values for the ratios for the rest of the physics tests are
provided in appendix, table A-1 to table A-7. Furthermore, by comparing
the values in each entry for respective row in table 1 and in the rest of
the tables in appendix, the results indicate that the dependence between
success on a specific task and on the rest of the tasks on the test increases
the later the tasks are positioned in the tests. This tendency seems to
be the same for both IR tasks and CR tasks used as reference tasks. For
example, consider the values in the first row in table 1, all values are less
than 1.5 for the first 10 tasks, and for task 11 and the following six tasks,
only one value is less than 1.5. Similar result holds for the values in the
second row, where the values for the first 10 tasks except one, are less
than 1.20, and all values are larger than 1.20 for all but one of the rest of
the tasks.

To analyse further whether there are any differences in the ratios with
respect to mathematical reasoning categories, the mean ratio (r) were
calculated for respective category (IR, LCR and GCR) for each reference
task in each test (table 2 ). The first row for every test in table 2 shows the
values when the chosen CR task is used as reference task, and the second
row shows the values when the IR task is used as reference task. So the
top two rows are the respective means of the values in table 1. The values
indicate that the success on other tasks is more dependent on students’
success on a CR task than on their success on an IR task.
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Table 2. The mean ratio, for each of the mathematical reasoning categories with
respect to the different reference tasks in each test

R 7

IR LCR GCR

Physics A VT 02 12 (LCR) 1.45 1.43 2.56
6 (IR) 118 1.24 1.38

Physis AHT04 11 (GCR) 1.42 1.68 2.03
8a (IR) 1.26 1.39 1.31

Physics A VT 05 10 (GCR) 1.28 1.53 1.45
8a (IR) 1.02 1.03 1.03

PhysisBVT02  10(GCR) 1.44 1.84 2.21
7 (IR) 1.27 1.51 1.59

PhysicsBVT03  8(LCR) 1.27 1.44 1.65
7 (IR) 1.13 1.20 1.27

PhysicsBVT05  12b(GCR) 117 1.21 1.22
8b (IR) 1.25 1.46 1.42

Physics BVT 06 12a (GCR) 1.40 1.73 1.94
10b (IR) 1.38 1.32 1.29

PhysicsBVT10  11b(GCR) 139 1.52 2.03
9b (IR) 1.19 1.24 1.49

The tendency discussed above, that the dependence increase with the
tasks position in the test, suggests that position has an effect on the
dependence. As described in the Method section, a new reference task
with another position was chosen for each test and values for the ratios
according to (1) were estimated with this new task as reference. The new
values for the Physics A 2002 test are displayed in the last row in table
3. The first two rows in the table are the previously calculated and dis-
played ratios in table 1, with the two other tasks used as reference tasks.
As previously, tables for the other physics tests are available in appendix,
table A-8 to table A-13. No new task were chosen for the Physics B 2003
test since the two previously used tasks already were positioned next to
each other in the test (table A-4).

Comparing the values in row 1 and 3 for each task in table 3 shows
that the ratio in all except one case, was larger when the CR task (task 12)
was the reference, compared to when the IR task (task 11) was used in the
calculations. Consider for example the values in row 1 and 3 for task 1b,
these are 1.47 and 1.35, respectively; and corresponding values for task 15
are 2.28 and 2.08, respectively. Similar results were obtained for the rest
of the calculations, which indicate that success on a GCR task, even when
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Table 3. Ratios according to (1) for the tasks in the Physics A 2002 test with the new
task 11 together with tasks 12 and 6 as reference tasks

Task la 1b 2a 2b 3 4 5 6 7 8
(IR) (IR) (NMR) (IR) (IR) (LCR) (LCR) (IR) (NMR) (NMR)
12 1.21 1.47 1.20 1.44 1.08 1.36 1.49
6 1.14 1.21 1.12 1.19 1.07 1.15 R
11 1.18 1.35 1.16 1.35 1.09 1.33 1.40

9 10 11 12 13 14G 14VG 15  16a  16b
(NMR) (LCR) (IR) (LCR) (GCR) (LCR) (GCR) (GCR) (GCR) (GCR)

12 1.29 1.87 R 1.27 1.95 4.76 2.28 1.68 2.81
6 1.19 1.24 1.49 117 1.31 1.69 1.37 1.22 1.43
11 1.23 R 2.11 1.20 177 213 2.08 1.45 1.23

account for position in the test is taken, in most cases has a larger effect
on the success on the rest of the tasks, than success on an IR task has.

The means of the ratios for respective reasoning categories with
respect to the latest reference tasks in each physics tasks are displayed in
table 4. Comparing the means with the previous calculated ones (table
2), shows that in six out of eight tests the effect on success is higher for
all three reasoning categories when students succeed on a CR task com-
pared toif they have succeeded on an IR task. The means of the estimated
ratios for the Physics A 2002 test are for example 1.45 for IR tasks, 1.43
for LCR tasks and 2.56 for GCR tasks when the LCR task (task 12) was
used as the reference task (table 2). Corresponding means are 1.29, 1.51
and 1.62, respectively (table 4), when the IR task (task 11) was used as the
reference task in equation (1).

The significance testing was performed to test the hypothesis that if
students solve a CR task they have a higher chance to solve other physics
tasks requiring mathematical reasoning, than if they solve an IR task.
The hypothesis was tested on the pair of calculated values for the con-
ditional probabilities (1) with the CR task and the IR task as close as
possible as reference tasks, or with a CR task occurring earlier in the
test than the used IR task. For the Physics A 2002 test this means that
it is the values in the first and the last rows for every task (not used as R)
that are included (table 3). Since the difference is assumed to be general
and not restricted to specific tasks or tests, the t-test was performed
on all physics tests together. In total 103 pairs of values were included.
The result showed that there is a significant difference of the means of
the conditional probabilities with CR as R and with IR as R (x, = 0.15,
p =0.000017 < 0.05). The effect of the significant difference, d = 041, is
considered to be around 0.5 and thus in the lower range of medium.
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Table 4. The mean ratio for each of the mathematical reasoning categories with
respect to the added reference tasks in each test

R r

IR LCR GCR
Physics A VT 02 11 (IR) 1.29 1.51 1.62
Physics A HT 04 7a (GCR) 119 1.31 143
Physics A VT 05 12a (IR) 119 1.37 1.33
Physics B VT 02 9b (IR) 1.39 1.67 1.97
Physics B VT 05 7 (GCR) 1.27 145 142
Physics BVT 06 4 (GCR) 1.50 1.45 1.65
Physics B VT 10 7b (GCR) 1.30 1.31 1.67

As described in Method, odds ratio is used as a measure of effect size of
the separately calculated dependencies. Estimations of the odds ratio
were calculated according to (2) for all tasks in every physics test with
the three different reference tasks, respectively. The values of effect sizes
for the tasks in the Physics A 2002 test are displayed in table 5, and
the effect sizes for the rest of the physics tests are provided in appen-
dix, table A-14 to table A-20. The effect sizes that are interesting to
compare for each task are at first-hand the two that are calculated with
reference tasks as close as possible to each other, or when the reference
task is a CR task occurring earlier in the test than the used IR task. Then,
as described above, possible influences of the tasks position in the tests
are considered. Thus, for the Physics A 2002 test, the values in the first
and the last rows are the one most interesting to compare. For example,
the value of the effect size for having solved the CR task 12 (row 1, table
5) is 7.13 for task 1a, and 3.95 for task 1b. Both these could be considered
medium effects according to the rule of thumb outlined in the Statisti-
cal method section, i.e. the value is between 3.5 and 9. It is also noticed
that the effect is larger on task 1la than on 1b. Corresponding values of
the effect for having solved the IR task 11 (row 3, table 5) are 6.91 for task
la and 4.04 for task 1b, which also can be considered as a medium effect,
and larger for task la than for task 1b.

When analysing the values in row 1 and row 3 for every task, it is
noticed that there isa medium effect on 8 of the 14 tasks that are included
in the analysis and not used as reference tasks, and a large effect on 2 of
the 14 tasks. On the rest of the four tasks the effect is small. When only
effect sizes that can be considered at least medium is taken into account,
and pair-wise compared for each task in the Physics A 2002 test, it is
noticed that the effect is larger on five tasks if the students have solved the
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Table 5. Odds ratios according to (2) for the tasks in the Physics A 2002 test with
tasks 12,6 and 11 as reference tasks

Task la 1b 2a 2b 3 4 5 6 7 8
(IR) (IR) (NMR) (IR) (IR) (LCR) (LCR) (IR) (NMR) (NMR)
12 7.13 3.95 6.76 4.11 1.56 3.16 4.70
6 5.06 2.84 4.05 2.72 1.92 2.44 R
11 6.91 4.04 5.18 3.98 1.96 3.47 5.54

9 10 13 14G 14VG 15 16a 16b
(NMR) (LCR) (IR) (LCR) (GCR) (LCR) (GCR) (GCR) (GCR) (GCR)

12 2.67 6.74 R 2.04 3.09 18.9 3.82 4.75 5.44
6 3.42 4.54 4.70 2.31 3.06 3.21 2.50 3.50
11 2.98 R 8.43 2.14 4.93 10.6 6.77 4.11 11.9

CR task, compared to if they have solved the IR task. This holds for task
la, 2b, 3, 14VG and 16a (table 5). It is also noticed that the effect is higher
on five of the tasks if the student instead solves the IR task compared to
the CR task, see task 1b, 6, 14G, 15 and 16b in table 5. The values in the
table also shows that the effect in most cases are larger for the five tasks
with a larger effect for solving the CR task, than on the five task with a
larger effect for solving the IR task.

Compiling the above result with the result from the analysis of the
effect sizes for the tasks in the rest of the physics tests shows that there
are 50 out of 103 tasks that have a medium effect. Of these 50 tasks the
effect is larger on 26 of the tasks if the students have solved the CR task
used as reference task compared to if they have solved the IR task (table
6). There are four tasks (of the 103 tasks) that have a large effect; and
for three of these four tasks, the effect is larger if students solve the CR
task than if they solve the IR task. Furthermore, there are one task that
no students manage to solve without also solving the CR task used as

Table 6. Number of tasks with the different effect sizes

Effect size Number of tasks
Small effect 48
Medium effect, larger with CR as reference task 26
Medium effect, larger with IR as reference task 24
Large effect, larger with CR as reference task 3
Large effect, larger with IR as reference task 1
Infinite effect with CR as reference 1
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reference task, thus the nominator in (2) is O and the odds-ratio turns to
infinity (task 14VG, table A-14).

When only effects considered at least medium (and the one with infi-
nity is excluded), there are in total 29 tasks for which the effects are
higher when a CR task is used as reference task, and 26 tasks for which the
effects are higher when an IR task is used as reference. Comparing this
with the previous result, that there is a significant difference between the
general effect of solving a CR task and an IR task, shows that although
the general effect is large enough to consider, the effects on individual
tasks do not differ so much.

Discussion and implications

The outcome of the present study shows that mastering the ability to
reasoning mathematically creatively has a positive effect on the success
on other physics tasks. It is shown that the effect generally is higher for
tasks requiring CR compared to tasks solvable with IR. Going back to
the definitions of the reasoning categories, CR tasks require that stu-
dents can use their mathematical knowledge in novel situations, which
in turn implies an intrinsic understanding of the mathematics that is
involved. At the same time, when students are able to use their knowledge
in novel situations, they have also developed another approach to the task
solving process. Their strategy is based on the judgement of plausibility,
which means that they analyse the task/assignment and have an idea of
plausible conclusions. This ability to reason mathematically creatively is
thought to be generalizable to various mathematical areas. IR tasks, on
the other hand, could be solved by remembering an algorithm, and no
intrinsic understanding of the mathematics is required. Therefore it is
reasonable that the effect between success on CR tasks is higher than
the effect of success on a CR task and on an IR task. Nevertheless, there
is still a positive effect on IR tasks from the success on CR tasks, which
suggests that students who have developed the ability to reason mathe-
matically creatively also have a better chance to succeed on tasks of a
more procedural character. That no intrinsic understanding is required
in order to solve IR tasks does not exclude the possibility that students
could have developed some conceptual understanding; and thus, success
on IR tasks positively affects the success on CR tasks. At the same time,
the only characteristics different IR tasks have in common, at least theo-
retically, are that they should be possible to solve by remembering an
answer or a procedure and implement this. Therefore it is reasonable to
expect that the effect on the success on other IR tasks varies depending
whether they are solved by similar procedures.
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In the analysis, Cohen’s d was used as a measure of the general effect
of the difference in success. This is a recognized effect size for the
comparison between means for two different groups. Odds-ratio, was also
used as an effect size. Not to compare means, but to determine the asso-
ciation between two variables, which is a common use of odds-ratio. The
t-test showed significant difference between the successes with respect
to the different reasoning types, and Cohen’s d suggested that the effect
of this difference is large enough to consider. Odds-ratios showed that
the effects due to the different reasoning types varied quite a lot on the
different tasks. Although the effect seemed a bit larger due to CR tasks
than due to IR tasks, this was not clearly determined. Further studies of
the relation between the various effect sizes and the size of the effect of
the dependence are required.

The present analysis of dependence between success on CR tasks and
on IR tasks has been conducted on physics tasks, which is a limitation
of the study. In order to deepen and generalise the results, continued
studies of the dependence should be performed on mathematics tasks.
Then, account is taken for possible influence students’ understanding of
physics has on the result. During the analysis, results indicated that the
position of the tasks could influence the dependence of success, and this
was accounted for by choosing different reference tasks. It is common
in the Swedish test system that tests start with easier tasks and that the
difficultness increases with later position. The scores on each task in
physics and mathematics tests are labelled to indicate which grades they
correspond to. Thus, accounting for the scoring of the tasks may reduce
the influence of tasks’ difficultness on the result even more.

Another limitation of the study is that it is conducted in a Swedish
context. As discussed in the Physics in the Swedish School section, there
are alignments with the Norwegian syllabus and a Nordic profile has
been identified. Thus the results can be considered interesting to a Scan-
dinavian context. Furthermore, the goals and subject description in the
Swedish curriculum are quite rich and highly in accordance with the
TIMSS Assessment framework (Garden et al. 2006; Swedish National
Agency for Education, 2009). This suggests that the results also are
relevant to an international context.

As discussed, there are additional factors to consider in the analysis of
the dependence between success on CR tasks and on IR tasks and further
studies should be performed in order to make general conclusions. The
present results though, give reliable indications of the positive effect of
creative mathematical reasoning on task solving. These results might
contribute to the discussion about the effect mathematical reasoning
has on students’ development of knowledge of mathematics as well as
of physics.
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Appendix
Example A-1

A weightlifter is lifting a barbell that weighs 219 kg. The barbell is lifted 2.1 m
up from the floorin 5.0s.

25 ;ifir i

What is the average power the weightlifter develops on the barbell during
the lift?

Analysis

I. Analysis of the assessment task — answers and solutions

A typical solution from an average student could be derived by the rela-
tion between power and the change of energy over a specific period of
time. In this task, the change of energy is the same as the change of
potential energy for the barbell. Multiply the mass of the barbell by
the acceleration of gravity and the height of the lift and then divide by
the time to get the power asked for. The mathematical subject area is
identified as algebra, in this case working with formulas. The identifi-
cation of the situation to lift a barbell can trigger the student to use a
certain solution method and is, therefore, included in this analysis as an
identified "real-life” situation.

I1. Analysis of the assessment task — task variables

The assignment is to calculate the average power during the lift. The
mass of the barbell, the height of the lift, and the time for the lift are all
considered as mathematical objects. In this example, all of the objects are
given explicitly in the assignment in numerical form. In the presentation
of the task, there is also an illustrative figure of the lift.

II1. Analysis of the textbooks and handbook - answers and solutions

Handbook: Formulas for power, P=AW/At, with the explanation "AW =
the change in energy during time At”; for "work during lift”, W; = mg-h,
with the explanatory text, "A body with weight mg is lifted to a height
h. The lifting work is ...”; and for potential energy with the text "A body
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with mass m at a height h over the zero level has the potential energy
W, =mg-h". Mathematics book: Numerous examples and exercises of how
to use formulas, e.g. on pages 28-30. Physics book: Power is presented as
work divided by time, and in on example work is exemplified as lifting a
barbell. An identical example is found on page 130. An example of calcu-
lating work during alift in relation to change in potential energy is found
on page 136. Exercises 5.05 and 5.10 are solved by a similar algorithm.

IV. Argumentation for the requirement of reasoning

The analysis of the textbooks shows that there are more than three tasks
similar to the task being categorised with respect to the task variables,
and these tasks can be solved with a similar algorithm. If the students
have seen tasks solvable by a similar algorithm at least three times, it is
assumed that they will remember the solution procedure. This task is
then categorised as solvable using IR.

Example A-2

Apatientisgoingtogetaninjection. The medical
staffsarereading in theinstructions that they are
supposed to use a syringe that gives the lowest
pressure as possible in the body tissue. Which of
the syringes A or B shall the staff choose if the
sameforce, F isapplied and theinjectionneedles | ugea ayinga &
have the same dimensions? Argue for the answer

Analysis

L. Analysis of the assessment task — answers and solutions

To solve this task, the student can use the relation between pressure,
force, and area (p=F/A). Neglecting the hydrostatic pressure from the
injection fluid, if the force applied to the syringe is the same then it is
the area of the bottom that affects the pressure. The larger the area, the
lower the pressure. The staff should choose syringe B. The mathematical
subject area is identified as algebra, such as to work with formulas and
proportionality.

II. Analysis of the assessment task — task variables

The assignment is to choose which syringe that gives the minimum pres-
sure and to provide an argument for this choice. Only the force is given as
a variable, and this is represented by a letter. Key words for the students
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can be force and pressure. The situation is illustrated by a figure in which
it appears that syringe B has a greater diameter than syringe A.

II1. Analysis of the textbooks and handbook - answers and solutions
Handbook: The relation p=F/A is defined. Mathematics book: Proportio-
nalities are discussed and exemplified but are not used for general com-
parisons. Physics book: One example about how different areas affect the
pressure and one exercise that is solved in a similar way by using a general
comparison between different areas and pressure.

IV. Argumentation for the requirement of reasoning

There is only one example and one exercise that can be considered similar
with regard to the task variables and the solution algorithm. The formula
isin the handbook, but there has to be some understanding of the intrin-
sic properties in order to be able to use the formula in the solution. This
task is, therefore, considered to require some CR, in this case GCR, in
order to be solved.
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